In a triangle △ABC with incenter I, the incircle meets lines BC,CA,AB at D,E,F respectively. Define the circumcenter of △IAB and △IAC O1 and O2 respectively. Let the two intersections of the circumcircle of △ABC and line EF be P,Q. Prove that the circumcenter of △DPQ lies on the line O1O2.
Problem
Source: 2015 Final Korean Mathematical Olympiad Day 1 Problem 2
Tags: geometry, circumcircle, concurrency, incenter
21.03.2015 12:51
My solution: Let R=PQ∩BC and T be the midpoint of BC . Let O be the center of ⊙(ABC) and M be the midpoint of arc BAC . Let N≡AI∩⊙(O) be the midpoint of arc BC and G be the midpoint of IM . From (B,C;D,R)=−1⟹RP⋅RQ=RB⋅RC=RD⋅RT⟹T∈⊙(DPQ) . Since ID⊥BC,MN⊥BC , so G lie on the perpendicular bisector of DT . From OG∥NI≡AI⟹OG⊥AM⟹OG⊥PQ , so G lie on the perpendicular bisector of PQ⟹G is the center of ⊙(DPQ) . Since O1O2 is the perpendicular bisector of AI , so from GA=GI we get G lie on O1O2 . i.e. O1O2 pass through the center of ⊙(DPQ) Q.E.D
21.03.2015 14:01
Nice Solution. TelvCohl wrote: Let R=PQ∩BC. Yeah, when AB=AC...
29.12.2015 11:57
In another thread regarding this problem, izat wrote: Let M - midpoint of BC .Let PQ and BC intersect at R(w.l.o.g assume that AC>BC) , then R;D;B;C - harmonic.So, (1)RB∗DC=BC∗RC. Let RB=x,BD=y,DM=z then from (1) we get (2)xz=y2+zy. RP∗RQ=RB∗RC ,however, RB∗RC=RD∗RM it follows from (2) . So D,P,Q,M are concyclic.It's well-known that O1 and O2 are intersection of CI and BI with the circumcircle of ABC and that O1O2 is perpendicular to AI. But PQ is also perpendicular to AI , so PQ and O1O2 are parallel. Let N be midpoint of arc CAB , then it is easy to prove that NO2IO1 is parallelogarm. Let K be intersection O1O2 and NI so K is midpoint of O1O2. ID perpendicular to BC , NM perpendicular to BC, so ID and NM are parellel, that's why KD=KM. Moreover, KO perpendicular to PQ, where O is circumcenter of ABC. So perpendicular bisectors of DM and PQ intersect at K, so K is circumcenter of DPQ and lies on O1O2
04.03.2016 03:19
We claim that the circumcenter of △DPQ must be the midpoint of O1O2. Case 1. AB=AC. From Fact 5, we know that O1,O2 lie on the circumcircle of △ABC. Now take M=O1O2∩AD and N=PQ∩AD. Note the symmetry wrt AD. Let AD hit the circumcircle of △ABC at K. We show that M is the circumcenter of △DPQ. First, note that O1AO2I is a parallelogram by a simple angle chase. This gives that M is the midpoint of AI. Since symmetry gives us MP=MQ, we just need to show that MP=MD. Now let a=AM, b=MN. We get NI=MI−MN=AM−MN=a−b. Also, since △IFN∼△IAF, we have ID=IF=√IN⋅IA=√2a(a−b) Also, as ∠AFI=∠ADB=90 and ∠ANF=∠ABD=90, we have (F,N,K,B) and (F,I,D,B) cyclic. This gives us AF⋅AB=AN⋅AK=AI⋅AD. We are ready to compute. We calculate MP2=MN2+PN2=MN2+PN⋅NQ=MN2+AN⋅NK=MN2+AN⋅AK−AN2=MN2+AI⋅AD−AN2=b2+2a⋅(2a+√2a(a−b))−(a+b)2=3a2−2ab+2a√2a(a−b)=(a+√2a(a−b))2=MD2so MP=MD=MQ, giving M as the circumcenter of △DPQ as required. Case 2. AB≠AC. Take R as the midpoint of arc BC, and N as the midpoint of arc BAC. Take M as the midpoint of BC. Lemma. Take D,E,F∈BC,CA,AB such that AD,BE,CF concur. Take M as the midpoint of BC, let EF hit the circumcircle of △ABC at P,Q. Then, D,M,P,Q are cyclic. Proof of Lemma. Taking BC∩EF=X, we have (X,D,B,C) harmonic, so XP⋅XQ=XB⋅XC=XD⋅XMgiving D,M,P,Q cyclic as required. Now using this lemma, we have D,M,P,Q cyclic. Take O′ as the midpoint of IN. As O1NO2I is a parallelogram by a simple angle chase, we know that O′ is also the midpoint of O1O2. Now since ID⊥BC and NM⊥BC, we know that O′ lies on the perpendicular bisector of DM. Also, as O′O∥IR=AI and AI⊥EF=PQ, we have O′O⊥PQ. Since O lie on the perpendicular bisector of PQ, so does O′. This gives us that O′ is the circumcenter of △DPQ, as desired. ◼
06.03.2016 01:20
22.03.2017 21:06
EF∩BC={A′} ⟹ (B,C;D,A′)=−1 let M be the midpoint of BC ⟹ A′B⋅A′C=A′E⋅A′F=A′D⋅A′M ⟹ M∈⊙PQD.PQ||O1O2 and so its perpendicular bisector passes thru the midpoint of O1O2 say R.Let IB,IC be the excenters and let X′ be the projection of X on BC. DO′1=DI′B2=b2=c2−c−b2=DO′2−DM=MO′2⟹MR=RDAnd hence the perpendicular bisector od MD also passes thru R and so R is the desired circumcenter.
23.03.2017 16:33
Here's a nice barybash. Let ω be the circle (DPQ). If X=EF∩BC and M is the midpoint of ¯BC, then (B,C;D,X)=−1⟹XD⋅XM=XB⋅XC=XP⋅XQ,so M lies on ω. Note that E=(s−c:0:s−a) and F=(s−b:s−a:0). Hence the equation of EF is −(s−a)x+(s−b)y+(s−c)z=0.Then ω has equation −a2yz−b2zx−c2xy+k(−(s−a)x+(s−b)y+(s−c)z)(x+y+z)=0,for some k. Plugging in M=(0:1:1) gives k=a2. Since O1O2 is the perpendicular bisector of ¯AI, it suffices to show that A,I have equal powers with respect to ω. Easily we see that Pow(A,ω)=−a2(s−a) and now Pow(I,ω)=1a+b+c(−abc+a2(−a(s−a)+b(s−b)+c(s−c)))=1a+b+c(a2(2s(s−a)+a2−b2−c2−2bc))=−a2(s−a).The result follows.
10.09.2018 18:28
Let M and N be the midpoints of BC and O1O2, respectively, K′ be the midpoint of arc BAC and K be the antipode of K in ⊙(ABC). Claim: M,D,P,Q are concyclic. Proof: Let EF intersect BC at R. Note that (B,C;D,R)=−1 and thus, D and R are inverses wrt ⊙(M,MB). Therefore, we have RD⋅RM=RB⋅RC=RP⋅RQ Note that O1,O2 are the midpoint of arc AB, not containing A, and AC, not containing B, respectively. I is the orthocenter of △KO1O2. Thus, the midpoint of IK′ is the midpoint of O1O2. The perpendicular biscector of DM passes through the midpoint of IK′ which is N. The perpendicular bisector of PQ passes through N since PQ∥O1O2. Thus, N is the centre of ⊙(ABC). [asy][asy] unitsize(2.5cm); import geometry; pair A = dir(130), B = dir(210), C = -1/B; triangle t = triangle((point) A, (point) B, (point) C); circle c = circumcircle(t); pair I = incenter(t), O_1 = circumcenter(I, A, B), O_2 = circumcenter(I, A, C), K = circumcenter(I, B, C), K_ = -K; pair D = foot(I, B, C), E = foot(I, C, A), F = foot(I, A, B); pair P = intersectionpoints(line(E, F), c)[0], Q = intersectionpoints(line(E, F), c)[1]; pair N = (O_1 + O_2)/2, M = (B + C)/2, R = extension(P, Q, B, C); draw(t); draw(circumcircle(t)); dot(M); dot(A^^B^^C); dot(O_1^^O_2^^K^^K_); dot(I); dot(P^^Q); dot(D^^E^^F); draw(D--P--Q--cycle, linewidth(1.1)); draw(circumcircle(D, P, Q), dashed+linewidth(0.4)); dot(R); draw(P--R--B); dot(N); draw(O_1--O_2^^I--K_, linetype("1 2")+linewidth(0.6)); label("A", A, A); label("B", B, B*dir(10)); label("C", C, C); label("P", P, P*dir(-20)); label("Q", Q, Q); label("K", K, K); label("K′", K_, K_); label("O1", O_1, O_1); label("O2", O_2, O_2); label("D", D, (0,-1)); label("M", M, (0,-1)); label("E", E, dir(80)); label("F", F, dir(120)); label("I", I, dir(0)); label("R", R, -dir(0)); label("N", N, dir(120)); [/asy][/asy]
03.01.2019 11:50
Again it helps to know one's lemmas . Anyway, here's my solution (Nothing new): Let M be the midpoint of BC, and let N be the midpoint of \overarcBAC. From here, we get that if EF∩BC=X, then XD⋅XM=XB⋅XC=XP⋅XQ, which means that M lies on ⊙(DPQ). Let J be the midpoint of IN. Then, as IO1NO2 is a parallelogram (easy angle chase), we get that J lies on O1O2 also. And, as EF∥O1O2, so OJ is the perpendicular bisector of PQ, where O is the center of ⊙(ABC). Also, ID∥NM, which means that J lies on the perpendicular bisector of MD also. Thus, J is nothing but the center of ⊙(DMPQ), which lies on O1O2. ◼
04.01.2019 07:55
Solution as far in my memory. It suffices to prove that I,O= circumcenter ⊙(DPQ),M= midpoint \overarcBAC are all collinear. Now, invert in the incircle. Let H be the orthocenter of △DEF and M′= midpoint DH. Note that ¯I,M,M′, so we have to prove that ⊙DEF,⊙(DH),⊙(AP∗Q∗) share a common radical axes where P∗,Q∗≡⊙EIF∩ N.P.C. of ΔDEF which follows easily since EF, line joining alt. feets ,P∗Q∗, and the radical axes are all concurrent.
28.10.2019 17:44
rkm0959 wrote: In a triangle △ABC with incenter I, the incircle meets lines BC,CA,AB at D,E,F respectively. Define the circumcenter of △IAB and △IAC O1 and O2 respectively. Let the two intersections of the circumcircle of △ABC and line EF be P,Q. Prove that the circumcenter of △DPQ lies on the line O1O2.
06.10.2020 10:06
[asy][asy] size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -19.837534648763267, xmax = 20.615068912739126, ymin = -23.57606352203324, ymax = 10.786900793651586; /* image dimensions */ /* draw figures */draw(circle((-2.7274834059029396,-4.592536161195095), 4.182842891181896), linewidth(0.8)); draw(circle((1.387948148176366,-4.021798923815007), 10.078493196513339), linewidth(0.8)); draw((10.045195078927208,-9.182041233258508)--(-8.573742005953362,-2.4918465110647077), linewidth(0.8)); draw((-5.784242174933093,3.0588586078878715)--(1.068879870256798,-14.09524026956131), linewidth(0.8)); draw((-5.784242174933093,3.0588586078878715)--(-7.578510881290054,-8.623824302391897), linewidth(0.8)); draw((-7.578510881290054,-8.623824302391897)--(10.045195078927208,-9.182041233258508), linewidth(0.8)); draw((10.045195078927208,-9.182041233258508)--(-5.784242174933093,3.0588586078878715), linewidth(0.8)); draw((-6.861849950562904,-3.9575653534351276)--(-0.1687087896636224,-1.2836319444489737), linewidth(0.8)); draw((-8.573742005953362,-2.4918465110647077)--(7.553275026146356,3.9509527718009103), linewidth(0.8)); draw((-8.573742005953362,-2.4918465110647077)--(1.068879870256798,-14.09524026956131), linewidth(0.8)); draw((1.068879870256798,-14.09524026956131)--(7.553275026146356,3.9509527718009103), linewidth(0.8)); draw((-3.647701323456902,-6.8013448835972445)--(-0.5102334899035026,0.7295531303681013), linewidth(0.8)); draw((-4.435497287667226,-4.829407371344201)--(-3.515279370113263,-2.6205986489420505), linewidth(0.8)); /* dots and labels */dot((-5.784242174933093,3.0588586078878715),dotstyle); label("A", (-5.628376408522282,3.4285867049553636), NE * labelscalefactor); dot((-7.578510881290054,-8.623824302391897),dotstyle); label("B", (-7.440769041206082,-8.279469702181977), NE * labelscalefactor); dot((10.045195078927208,-9.182041233258508),dotstyle); label("C", (10.356926611748824,-9.87437521894372), NE * labelscalefactor); dot((-2.7274834059029396,-4.592536161195095),linewidth(4pt) + dotstyle); label("I", (-2.2210782590767404,-5.560880753156279), NE * labelscalefactor); dot((-2.8599053592465777,-8.773282395850288),linewidth(4pt) + dotstyle); label("D", (-3.4535052493017235,-9.584392397714312), NE * labelscalefactor); dot((-6.861849950562904,-3.9575653534351276),linewidth(4pt) + dotstyle); label("E", (-6.425829166903154,-4.690932289468056), NE * labelscalefactor); dot((-0.1687087896636224,-1.2836319444489737),linewidth(4pt) + dotstyle); label("F", (-0.00995924720250563,-0.9936513187931058), NE * labelscalefactor); dot((-8.573742005953362,-2.4918465110647077),linewidth(4pt) + dotstyle); label("O1", (-8.419461062855333,-2.189830456364413), NE * labelscalefactor); dot((1.068879870256798,-14.09524026956131),linewidth(4pt) + dotstyle); label("O3", (0.4975106899489581,-14.912826737804682), NE * labelscalefactor); dot((7.553275026146356,3.9509527718009103),linewidth(4pt) + dotstyle); label("O2", (7.710833368030478,4.226039463336235), NE * labelscalefactor); dot((-0.5102334899035026,0.7295531303681013),linewidth(4pt) + dotstyle); label("M", (-0.3724377737392654,1.036228429812749), NE * labelscalefactor); dot((-4.435497287667226,-4.829407371344201),linewidth(4pt) + dotstyle); label("H", (-4.758427944834059,-5.814615721732011), NE * labelscalefactor); dot((-3.515279370113263,-2.6205986489420505),linewidth(4pt) + dotstyle); label("N", (-3.3810095439943715,-2.3348218669791168), NE * labelscalefactor); dot((-3.647701323456902,-6.8013448835972445),linewidth(4pt) + dotstyle); label("G", (-3.4897531019553996,-7.844495470337866), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] Let O3 be the circumcenter of △IBC. Let H be the orthocenter of △DEF, M,N and G be the midpoint of EF and HD respectively. We will show that M is the circumcenter of △DPQ. Indeed, since O1O2 and PQ are both perpendicular to AI, M lies on the perpendicular bisector of PQ. CLAIM. G,I and the circumcenter of △DPQ are collinear. Proof. Invert w.r.t. the incircle, then P′,Q′ are the second intersections of the circles (EIF) and the nine-point circle of △DEF. Let P′Q′ intersect EF at V. Let B be the second intersection of (DEF) and (DBHDHE), then V is the radical center of the nine-point circle, (IEF) and (DEF). Therefore, V,B,D are collinear. Hence VBF′Q′ is cyclic. Therefore from GD=GB, I,G and the circumcenter of (DBP′Q′) are collinear. ◼ [asy][asy] size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(0); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -19.740708580371834, xmax = 13.960468482885158, ymin = -22.1023460884845, ymax = 6.321778338532966; /* image dimensions */pen qqwuqq = rgb(0,0.39215686274509803,0); pen zzttff = rgb(0.6,0.2,1); /* draw figures */draw(circle((-1.592707484217268,-12.268506667683056), 8.721686845166335), linewidth(0.8) + blue); draw(circle((-4.128410707846865,-4.385808887405556), 4.309679157122033), linewidth(0.8) + blue); draw(circle((-4.9475581856959066,-1.8393389593838159), 5.413472031345108), linewidth(0.8) + linetype("4 4") + qqwuqq); draw(circle((-1.425692272557547,-3.5484190910458966), 8.619358314244066), linewidth(0.8) + qqwuqq); draw((-6.668010004233001,3.2934697234182364)--(-11.957561564910876,-7.606599262359754), linewidth(0.8) + zzttff); draw((-11.957561564910876,-7.606599262359754)--(-2.5303362432022625,-0.3833730737062355), linewidth(0.8) + zzttff); draw((-11.957561564910876,-7.606599262359754)--(5.98492302129587,-7.950250382205761), linewidth(0.8) + zzttff); draw((5.98492302129587,-7.950250382205761)--(-6.668010004233001,3.2934697234182364), linewidth(0.8)); draw((-11.957561564910876,-7.606599262359754)--(0.12929282178150386,-3.718504540707435), linewidth(0.8) + zzttff); draw((-6.668010004233001,3.2934697234182364)--(-6.8311291431361845,-5.223198683765217), linewidth(0.8)); draw((-6.668010004233001,3.2934697234182364)--(-8.999426705314148,-7.663256207069486), linewidth(0.8)); /* dots and labels */dot((-6.668010004233001,3.2934697234182364),dotstyle); label("D", (-6.5480769897730084,3.593302259568209), NE * labelscalefactor); dot((-8.999426705314148,-7.663256207069486),dotstyle); label("E", (-8.8867707717428,-7.3505853099058145), NE * labelscalefactor); dot((5.98492302129587,-7.950250382205761),dotstyle); label("F", (6.104856035755863,-7.650417846055788), NE * labelscalefactor); dot((-1.425692272557547,-3.548419091045896),linewidth(4pt) + dotstyle); label("I", (-1.3010076071484764,-3.3028460718811754), NE * labelscalefactor); dot((-1.507251842009139,-7.806753294637623),linewidth(4pt) + dotstyle); label("A′", (-1.3909573679934684,-7.560468085210796), NE * labelscalefactor); dot((-0.34154349146856555,-2.3283903293937622),linewidth(4pt) + dotstyle); label("B′", (-0.22161047700857273,-2.1035159272812827), NE * labelscalefactor); dot((-7.833718354773575,-2.1848932418256246),linewidth(4pt) + dotstyle); label("C′", (-7.717423880757904,-1.9535996592062959), NE * labelscalefactor); dot((-7.976646107827376,-6.326019892340046),linewidth(4pt) + dotstyle); label("P′", (-7.8673401488328905,-6.091288658075927), NE * labelscalefactor); dot((0.12929282178150386,-3.718504540707435),linewidth(4pt) + dotstyle); label("Q′", (0.2581215808313845,-3.4827455935711593), NE * labelscalefactor); dot((-11.957561564910876,-7.606599262359754),linewidth(4pt) + dotstyle); label("V", (-11.825129626012538,-7.380568563520812), NE * labelscalefactor); dot((-10.044276518023667,-3.663932523734483),linewidth(4pt) + dotstyle); label("B", (-11.01558177840761,-3.81256138333613), NE * labelscalefactor); dot((-6.8311291431361845,-5.223198683765217),linewidth(4pt) + dotstyle); label("H", (-6.697993257847995,-4.981908274321026), NE * labelscalefactor); dot((-8.408789520505717,-4.887497692815122),linewidth(4pt) + dotstyle); label("HD", (-8.287105699442852,-4.652092484556055), NE * labelscalefactor); dot((-2.5303362432022625,-0.3833730737062355),linewidth(4pt) + dotstyle); label("HE", (-2.4103879909033776,-0.1546044423064564), NE * labelscalefactor); dot((-6.749569573684592,-0.9648644801734902),linewidth(4pt) + dotstyle); label("G", (-6.638026750618001,-0.7242862609914056), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy][/asy] Now it suffices to show that G,I,M are collinear. Notice that △O1O2O3 and △EDF are homothetic. Since I is the orthocenter of △O1O2O3, NH‖. Meanwhile, H,N and the antipode of D w.r.t. the incircle are collinear, so GI\|NH. This completes the proof.