Determine all unordered triples $(x,y,z)$ of integers for which the number $\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{z+x}}$ is an integer.
Problem
Source: Blue MOP
Tags:
15.03.2015 20:05
16.02.2022 00:44
Lemma: $\sqrt{\frac{2005}{x+y}}$, $\sqrt{\frac{2005}{y+z}}$, and $\sqrt{\frac{2005}{z+x}}$ are all rational. Proof: Call these $\sqrt{a},\sqrt{b},\sqrt{c}$, respectively. We will show that $\sqrt{a}=\sqrt{\frac{2005}{x+y}}$ is rational and the others follow similarly. Let $n=\sqrt{a}+\sqrt{b}+\sqrt{c}$. We have $n-\sqrt{a}=\sqrt{b}+\sqrt{c}$. Squaring gives $n^2-2n\sqrt{a}+a=b+c+2\sqrt{bc}$. Rearranging gives us $2\sqrt{bc}=n^2+a-b-c-2n\sqrt{a}$. Squaring the new equation gives $4bc=(n^2+a-b-c)^2+4an-4n\sqrt{a}(n^2+a-b-c)$, so $\sqrt{a}$ must be rational. $\blacksquare$ Lemma: $\sqrt{a}, \sqrt{b}, \sqrt{c}$ are all $\frac{1}{m}$ for some positive integer $m$. Proof: We will show for $\sqrt{a}$ and the rest follow similarly. Let $\sqrt{\frac{2005}{x+y}}=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Squaring gives $\frac{2005}{x+y}=\frac{m^2}{n^2}$, so $2005n^2=m^2(x+y)$, which implies $m^2\mid 2005$, so $m=1$. Done. $\blacksquare$ Now let $\sqrt{\frac{2005}{x+y}}=\frac{1}{p}$, $\sqrt{\frac{2005}{y+z}}=\frac{1}{q}$,$\sqrt{\frac{2005}{z+x}}=\frac{1}{r}$. Note that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\le 3$. Case 1: $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3$. Then $p=q=r=1$. So $x+y=y+z=x+z=2005$. This implies all three of $x,y,z$ have pairwise distinct parity, contradiction. Case 2: $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=2$. Note that exactly one of $p,q,r$ is $1$. So the other two must be $2$. Then we get $x+y=2005, y+z=8020, x+z=8020$. Thus, all three of $x,y,z$ are of the same parity, which contradicts the fact that $x+y=2005$. Case 3: $\frac 1p+\frac 1q+\frac 1r=1$. Subcase 3.1: None of $p,q,r$ are $2$. Then we get $p=q=r=3$, so $x+y=y+z=x+z=18045$. This is a contradiction. Subcase 3.2: Exactly one of $p,q,r$ is $2$. WLOG $p=2$. Then $\frac{1}{q}+\frac{1}{r}=\frac{1}{2}$. The only solutions are $q=r=4$ and $q=3, r=6$. If $q=3, r=6$, then $x+y=8020, y+z=18045, x+z=72180$. Then all of $x,y,z$ are same parity, which contradicts the fact that $y+z=18045$. So $q=r=4$. Then $x+y=8020, y+z=x+z=32080$. Thus, we have $2x+2y+2z=72180\implies x+y+z=36090$. Thus, $x=y=4010$ and $z=28070$. It's easy to check that this works. $\boxed{(4010,4010,28070)}$.