2016 Ukraine Team Selection Test

Day 1

1

Consider a regular polygon $A_1A_2\ldots A_{6n+3}$. The vertices $A_{2n+1}, A_{4n+2}, A_{6n+3}$ are called holes. Initially there are three pebbles in some vertices of the polygon, which are also vertices of equilateral triangle. Players $A$ and $B$ take moves in turn. In each move, starting from $A$, the player chooses pebble and puts it to the next vertex clockwise (for example, $A_2\rightarrow A_3$, $A_{6n+3}\rightarrow A_1$). Player $A$ wins if at least two pebbles lie in holes after someone's move. Does player $A$ always have winning strategy? Proposed by Bohdan Rublov

2

Find all functions from positive integers to itself such that $f(a+b)=f(a)+f(b)+f(c)+f(d)$ for all $c^2+d^2=2ab$

3

Let $ABC$ be a triangle with $CA \neq CB$. Let $D$, $F$, and $G$ be the midpoints of the sides $AB$, $AC$, and $BC$ respectively. A circle $\Gamma$ passing through $C$ and tangent to $AB$ at $D$ meets the segments $AF$ and $BG$ at $H$ and $I$, respectively. The points $H'$ and $I'$ are symmetric to $H$ and $I$ about $F$ and $G$, respectively. The line $H'I'$ meets $CD$ and $FG$ at $Q$ and $M$, respectively. The line $CM$ meets $\Gamma$ again at $P$. Prove that $CQ = QP$. Proposed by El Salvador

Day 2

4

Find all positive integers $a$ such that for any positive integer $n\ge 5$ we have $2^n-n^2\mid a^n-n^a$.

5

Let $ABC$ be an equilateral triangle of side $1$. There are three grasshoppers sitting in $A$, $B$, $C$. At any point of time for any two grasshoppers separated by a distance $d$ one of them can jump over other one so that distance between them becomes $2kd$, $k,d$ are nonfixed positive integers. Let $M$, $N$ be points on rays $AB$, $AC$ such that $AM=AN=l$, $l$ is fixed positive integer. In a finite number of jumps all of grasshoppers end up sitting inside the triangle $AMN$. Find, in terms of $l$, the number of final positions of the grasshoppers. (Grasshoppers can leave the triangle $AMN$ during their jumps.)

6

Let $n$ be a fixed positive integer. Find the maximum possible value of \[ \sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s, \]where $-1 \le x_i \le 1$ for all $i = 1, \cdots , 2n$.

Day 3

7

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

8

Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.

9

Let $n$ be a positive integer. Two players $A$ and $B$ play a game in which they take turns choosing positive integers $k \le n$. The rules of the game are: (i) A player cannot choose a number that has been chosen by either player on any previous turn. (ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn. (iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game. The player $A$ takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies. Proposed by Finland

Day 4

10

Let $a_1,\ldots, a_n$ be real numbers. Define polynomials $f,g$ by $$f(x)=\sum_{k=1}^n a_kx^k,\ g(x)=\sum_{k=1}^n \frac{a_k}{2^k-1}x^k.$$Assume that $g(2016)=0$. Prove that $f(x)$ has a root in $(0;2016)$.

11

Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.

12

Suppose that $a_0, a_1, \cdots $ and $b_0, b_1, \cdots$ are two sequences of positive integers such that $a_0, b_0 \ge 2$ and \[ a_{n+1} = \gcd{(a_n, b_n)} + 1, \qquad b_{n+1} = \operatorname{lcm}{(a_n, b_n)} - 1. \]Show that the sequence $a_n$ is eventually periodic; in other words, there exist integers $N \ge 0$ and $t > 0$ such that $a_{n+t} = a_n$ for all $n \ge N$.