2017 Macedonia JBMO TST

1

Let $p$ be a prime number such that $3p+10$ is a sum of squares of six consecutive positive integers. Prove that $p-7$ is divisible by $36$.

2

In the triangle $ABC$, the medians $AA_1$, $BB_1$, and $CC_1$ are concurrent at a point $T$ such that $BA_1=TA_1$. The points $C_2$ and $B_2$ are chosen on the extensions of $CC_1$ and $BB_2$, respectively, such that $$C_1C_2 = \frac{CC_1}{3} \quad \text{and} \quad B_1B_2 = \frac{BB_1}{3}.$$Show that $TB_2AC_2$ is a rectangle.

3

Let $x,y,z$ be positive reals such that $xyz=1$. Show that $$\frac{x^2+y^2+z}{x^2+2} + \frac{y^2+z^2+x}{y^2+2} + \frac{z^2+x^2+y}{z^2+2} \geq 3.$$When does equality happen?

4

In triangle $ABC$, the points $X$ and $Y$ are chosen on the arc $BC$ of the circumscribed circle of $ABC$ that doesn't contain $A$ so that $\measuredangle BAX = \measuredangle CAY$. Let $M$ be the midpoint of the segment $AX$. Show that $$BM + CM > AY.$$

5

Find all the positive integers $n$ so that $n$ has the same number of digits as its number of different prime factors and the sum of these different prime factors is equal to the sum of exponents of all these primes in factorization of $n$.

Source

Taken from Pregătire Matematică Olimpiade Juniori. Translated by Amir Hossein Parvardi.