Let $H$ be the orthocenter of the triangle $ABC$. Let $M$ and $N$ be the midpoints of the sides $AB$ and $AC$, respectively. Assume that $H$ lies inside the quadrilateral $BMNC$ and that the circumcircles of triangles $BMH$ and $CNH$ are tangent to each other. The line through $H$ parallel to $BC$ intersects the circumcircles of the triangles $BMH$ and $CNH$ in the points $K$ and $L$, respectively. Let $F$ be the intersection point of $MK$ and $NL$ and let $J$ be the incenter of triangle $MHN$. Prove that $F J = F A$.
2018 APMO
Let $f(x)$ and $g(x)$ be given by $f(x) = \frac{1}{x} + \frac{1}{x-2} + \frac{1}{x-4} + \cdots + \frac{1}{x-2018}$ $g(x) = \frac{1}{x-1} + \frac{1}{x-3} + \frac{1}{x-5} + \cdots + \frac{1}{x-2017}$. Prove that $|f(x)-g(x)| >2$ for any non-integer real number $x$ satisfying $0 < x < 2018$.
A collection of $n$ squares on the plane is called tri-connected if the following criteria are satisfied: (i) All the squares are congruent. (ii) If two squares have a point $P$ in common, then $P$ is a vertex of each of the squares. (iii) Each square touches exactly three other squares. How many positive integers $n$ are there with $2018\leq n \leq 3018$, such that there exists a collection of $n$ squares that is tri-connected?
Let $ABC$ be an equilateral triangle. From the vertex $A$ we draw a ray towards the interior of the triangle such that the ray reaches one of the sides of the triangle. When the ray reaches a side, it then bounces off following the law of reflection, that is, if it arrives with a directed angle $\alpha$, it leaves with a directed angle $180^{\circ}-\alpha$. After $n$ bounces, the ray returns to $A$ without ever landing on any of the other two vertices. Find all possible values of $n$.
Find all polynomials $P(x)$ with integer coefficients such that for all real numbers $s$ and $t$, if $P(s)$ and $P(t)$ are both integers, then $P(st)$ is also an integer.