2018 Romania National Olympiad

Grade 7

1

Find the distinct positive integers $a, b, c,d$, such that the following conditions hold: (1) exactly three of the four numbers are prime numbers; (2) $a^2 + b^2 + c^2 + d^2 = 2018.$

2

In the square $ABCD$ the point $E$ is located on the side $[AB]$, and $F$ is the foot of the perpendicular from $B$ on the line $DE$. The point $L$ belongs to the line $DE$, such that $F$ is between $E$ and $L$, and $FL = BF$. $N$ and $P$ are symmetric of the points $A , F$ with respect to the lines $DE, BL$, respectively. Prove that: a) The quadrilateral $BFLP$ is square and the quadrilateral $ALND$ is rhombus. b) The area of the rhombus $ALND$ is equal to the difference between the areas of the squares $ABCD$ and $BFLP$.

3

On the sides $[AB]$ and $[BC]$ of the parallelogram $ABCD$ are constructed the equilateral triangles $ABE$ and $BCF,$ so that the points $D$ and $E$ are on the same side of the line $AB$, and $F$ and $D$ on different sides of the line $BC$. If the points $E,D$ and $F$ are collinear, then prove that $ABCD$ is rhombus.

4

Find the natural number $n$ for which $$\sqrt{\frac{20^n- 18^n}{19}}$$is a rational number.

Grade 8

1

Prove that there are infinitely many sets of four positive integers so that the sum of the squares of any three elements is a perfect square.

2

Let $a, b, c, d$ be natural numbers such that $a + b + c + d = 2018$. Find the minimum value of the expression: $$E = (a-b)^2 + 2(a-c)^2 + 3(a-d)^2+4(b-c)^2 + 5(b-d)^2 + 6(c-d)^2.$$

3

Let $a, b, c \ge 0$ so that $ab + bc + ca = 3$. Prove that: $$\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\le \frac38$$

4

In the rectangular parallelepiped $ABCDA'B'C'D'$ we denote by $M$ the center of the face $ABB'A'$. We denote by $M_1$ and $M_2$ the projections of $M$ on the lines $B'C$ and $AD'$ respectively. Prove that: a) $MM_1 = MM_2$ b) if $(MM_1M_2) \cap (ABC) = d$, then $d \parallel AD$; c) $\angle (MM_1M_2), (A B C)= 45^ o \Leftrightarrow \frac{BC}{AB}=\frac{BB'}{BC}+\frac{BC}{BB'}$.

Grade 9

1

Prove that if in a triangle the orthocenter, the centroid and the incenter are collinear, then the triangle is isosceles.

2

Let $a,b,c \geq 0$ and $a+b+c=3.$ Prove that $$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \geq \frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+a}$$

3

Let $f,g : \mathbb{R} \to \mathbb{R}$ be two quadratics such that, for any real number $r,$ if $f(r)$ is an integer, then $g(r)$ is also an integer. Prove that there are two integers $m$ and $n$ such that $$g(x)=mf(x)+n, \: \forall x \in \mathbb{R}$$

4

Let $n \in \mathbb{N}^*$ and consider a circle of length $6n$ along with $3n$ points on the circle which divide it into $3n$ arcs: $n$ of them have length $1,$ some other $n$ have length $2$ and the remaining $n$ have length $3.$ Prove that among these points there must be two such that the line that connects them passes through the center of the circle.

Grade 10

1

Let $n \in \mathbb{N}_{\geq 2}$ and $a_1,a_2, \dots , a_n \in (1,\infty).$ Prove that $f:[0,\infty) \to \mathbb{R}$ with $$f(x)=(a_1a_2...a_n)^x-a_1^x-a_2^x-...-a_n^x$$is a strictly increasing function.

2

Let $ABC$ be a triangle, $O$ its circumcenter and $R=1$ its circumradius. Let $G_1,G_2,G_3$ be the centroids of the triangles $OBC, OAC$ and $OAB.$ Prove that the triangle $ABC$ is equilateral if and only if $$AG_1+BG_2+CG_3=4$$

3

Let $n \in \mathbb{N}_{\geq 2}.$ Prove that for any complex numbers $a_1,a_2,\ldots,a_n$ and $b_1,b_2,\ldots,b_n,$ the following statements are equivalent: a) $\sum_{k=1}^n|z-a_k|^2 \leq \sum_{k=1}^n|z-b_k|^2, \: \forall z \in \mathbb{C}.$ b) $\sum_{k=1}^na_k=\sum_{k=1}^nb_k$ and $\sum_{k=1}^n|a_k|^2 \leq \sum_{k=1}^n|b_k|^2.$

4

Let $n \in \mathbb{N}_{\geq 2}.$ For any real numbers $a_1,a_2,...,a_n$ denote $S_0=1$ and for $1 \leq k \leq n$ denote $$S_k=\sum_{1 \leq i_1 < i_2 < ... <i_k \leq n}a_{i_1}a_{i_2}...a_{i_k}$$Find the number of $n-$tuples $(a_1,a_2,...a_n)$ such that $$(S_n-S_{n-2}+S_{n-4}-...)^2+(S_{n-1}-S_{n-3}+S_{n-5}-...)^2=2^nS_n.$$

Grade 11

1

Let $n \geq 2$ be a positive integer and, for all vectors with integer entries $$X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$let $\delta(X) \geq 0$ be the greatest common divisor of $x_1,x_2, \dots, x_n.$ Also, consider $A \in \mathcal{M}_n(\mathbb{Z}).$ Prove that the following statements are equivalent: $\textbf{i) }$ $|\det A | = 1$ $\textbf{ii) }$ $\delta(AX)=\delta(X),$ for all vectors $X \in \mathcal{M}_{n,1}(\mathbb{Z}).$ Romeo Raicu

2

Let $x>0.$ Prove that $$2^{-x}+2^{-1/x} \leq 1.$$

3

Let $f: \mathbb{R} \to \mathbb{R}$ be a function with the intermediate value property. If $f$ is injective on $\mathbb{R} \setminus \mathbb{Q},$ prove that $f$ is continuous on $\mathbb{R}.$ Julieta R. Vergulescu

4

Let $n$ be an integer with $n \geq 2$ and let $A \in \mathcal{M}_n(\mathbb{C})$ such that $\operatorname{rank} A \neq \operatorname{rank} A^2.$ Prove that there exists a nonzero matrix $B \in \mathcal{M}_n(\mathbb{C})$ such that $$AB=BA=B^2=0$$ Cornel Delasava

Grade 12

1

Let $A$ be a finite ring and $a,b \in A,$ such that $(ab-1)b=0.$ Prove that $b(ab-1)=0.$

2

Let $\mathcal{F}$ be the set of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $$e^{f(x)}+f(x) \geq x+1, \: \forall x \in \mathbb{R}$$For $f \in \mathcal{F},$ let $$I(f)=\int_0^ef(x) dx$$Determine $\min_{f \in \mathcal{F}}I(f).$ Liviu Vlaicu

3

Let $f:[a,b] \to \mathbb{R}$ be an integrable function and $(a_n) \subset \mathbb{R}$ such that $a_n \to 0.$ $\textbf{a) }$ If $A= \{m \cdot a_n \mid m,n \in \mathbb{N}^* \},$ prove that every open interval of strictly positive real numbers contains elements from $A.$ $\textbf{b) }$ If, for any $n \in \mathbb{N}^*$ and for any $x,y \in [a,b]$ with $|x-y|=a_n,$ the inequality $\left| \int_x^yf(t)dt \right| \leq |x-y|$ is true, prove that $$\left| \int_x^y f(t)dt \right| \leq |x-y|, \: \forall x,y \in [a,b]$$ Nicolae Bourbacut

4

For any $k \in \mathbb{Z},$ define $$F_k=X^4+2(1-k)X^2+(1+k)^2.$$Find all values $k \in \mathbb{Z}$ such that $F_k$ is irreducible over $\mathbb{Z}$ and reducible over $\mathbb{Z}_p,$ for any prime $p.$ Marius Vladoiu