Let $x,y,z \in\mathbb{Q}$,such that $(x+y+z)^3=9(x^2y+y^2z+z^2x).$ Prove that $x=y=z$
2018 Moldova Team Selection Test
Day 1
The sequence $\left(a_{n}\right)_{n\in\mathbb{N}}$ is defined recursively as $a_{0}=a_{1}=1$, $a_{n+2}=5a_{n+1}-a_{n}-1$, $\forall n\in\mathbb{N}$ Prove that $$a_{n}\mid a_{n+1}^{2}+a_{n+1}+1$$for any $n\in\mathbb{N}$
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
A pupil is writing on a board positive integers $x_0,x_1,x_2,x_3...$ after the following algorithm which implies arithmetic progression $3,5,7,9...$.Each term of rank $k\ge2$ is a difference between the product of the last number on the board and the term of arithmetic progression of rank $k$ and the last but one term on the bord with the sum of the terms of the arithemtic progression with ranks less than $k$.If $x_0=0 $ and $x_1=1$ find $x_n$ according to n.
Day 2
Let $n, \in \mathbb {N^*} , n\ge 3$ a) Prove that the polynomial $f (x)=\frac {X^{2^n-1}-1}{X-1}-X^n $ has a divisor of form $X^p +1$ where $p\in\mathbb {N^*} $ b) Show that for $n=7$ the polynomial $f (X) $ has three divisors with integer coefficients .
Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Show that $$\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\geq \frac{3}{2}.$$
Let the triangle $ABC $ with $m (\angle ABC)=60^{\circ} $ and $m (\angle BAC)=40^{\circ}$ . Points $D $ and $E $ are on the sides $(AB) $ and $(AC) $ such that $m (\angle DCB )=70^{\circ}$ and $m (\angle EBC)=40^{\circ}$ . $BE$ and $CD$ intersect in $F $ . Prove that $BC $ and $AF $ are perpendicular.
Let the set $A=${$ 1,2,3, \dots ,48n+24$ } , where $ n \in \mathbb {N^*}$ . Prove that there exist a subset $B $ of $A $ with $24n+12$ elements with the property : the sum of the squares of the elements of the set $B $ is equal to the sum of the squares of the elements of the set $A$ \ $B $ .
Day 3
The positive integers $a $ and $b $ satisfy the sistem $\begin {cases} a_{10} +b_{10} = a \\a_{11}+b_{11 }=b \end {cases} $ where $ a_1 <a_2 <\dots $ and $ b_1 <b_2 <\dots $ are the positive divisors of $a $ and $b$ . Find $a$ and $b $ .
The positive real numbers $a,b, c,d$ satisfy the equality $ \frac {1}{a+1} + \frac {1}{b+1} + \frac {1}{c+1} + \frac{ 1}{d+1} = 3 $ . Prove the inequality $\sqrt [3]{abc} + \sqrt [3]{bcd} + \sqrt [3]{cda} + \sqrt [3]{dab} \le \frac {4}{3} $.
Let $\Omega $ be the circumcincle of the quadrilateral $ABCD $ , and $E $ the intersection point of the diagonals $AC $ and $BD $ . A line passing through $E $ intersects $AB $ and $BC$ in points $P $ and $Q $ . A circle ,that is passing through point $D $ , is tangent to the line $PQ $ in point $E $ and intersects $\Omega$ in point $R $ , different from $D $ . Prove that the points $B,P,Q,$ and $R $ are concyclic .
Let $p>3$ is a prime number and $k=\lfloor\frac{2p}{3}\rfloor$. Prove that \[{p \choose 1}+{p \choose 2}+\cdots+{p \choose k}\] is divisible by $p^{2}$.