Let $(x_n), n\in\mathbb{N}$ be a sequence such that $x_{n+1}=3x_n^3+x_n, \forall n\in\mathbb{N}$ and $x_1=\frac{a}{b}$ where $a,b$ are positive integers such that $3\not|b$. If $x_m$ is a square of a rational number for some positive integer $m$, prove that $x_1$ is also a square of a rational number.
2018 Greece National Olympiad
Let $ABC$ be an acute-angled triangle with $AB<AC<BC$ and $c(O,R)$ the circumscribed circle. Let $D, E$ be points in the small arcs $AC, AB$ respectively. Let $K$ be the intersection point of $BD,CE$ and $N$ the second common point of the circumscribed circles of the triangles $BKE$ and $CKD$. Prove that $A, K, N$ are collinear if and only if $K$ belongs to the symmedian of $ABC$ passing from $A$.
Let $n,m$ be positive integers such that $n<m$ and $a_1, a_2, ..., a_m$ be different real numbers. (a) Find all polynomials $P$ with real coefficients and degree at most $n$ such that: $|P(a_i)-P(a_j)|=|a_i-a_j|$ for all $i,j=\{1, 2, ..., m\}$ such that $i<j$. (b) If $n,m\ge 2$ does there exist a polynomial $Q$ with real coefficients and degree $n$ such that: $|Q(a_i)-Q(a_j)|<|a_i-a_j|$ for all $i,j=\{1, 2, ..., m\}$ such that $i<j$ Edit: See #3
In the plane, there are $n$ points ($n\ge 4$) where no 3 of them are collinear. Let $A(n)$ be the number of parallelograms whose vertices are those points with area $1$. Prove the following inequality: $A(n)\leq \frac{n^2-3n}{4}$ for all $n\ge 4$