Introductory part We call an $n$-tuple $x = (x_1, x_2, ... , x_n)$, with $x_k \in R$ (or respectively with all $x_k \in Z$) a real vector (or respectively an integer vector). The set of all real vectors (respectively all integer vectors) is usually denoted by $R^n$ (respectively $Z^n$). A vector $x$ is null if and only if $x_k = 0$, for all $k \in \{1, 2,... , n\}$. Also let $U_n$ be the set of all real vectors $x = (x_1, x_2, ... , x_n)$, such that $x^2_1 + x^2_2 + ...+ x^2_n = 1$. For two vectors $x = (x_1, ... , x_n), y = (y_1, ..., y_n)$ we define the scalar product as the real number $x\cdot y = x_1y_1 + x_2y_2 +...+ x_ny_n$. We define the norm of the vector $x$ as $||x|| =\sqrt{x^2_1 + x^2_2 + ...+ x^2_n}$ The problem Let $A(k, r) = \{x \in U_n |$ for all $z \in Z^n$ we have either $|x \cdot z| \ge \frac{k}{||z||^r}$ or $z$ is null $\}$. Prove that if $r > n - 1$ the we can find a positive number $k$ such that $A(k, r)$ is not empty, and if $r < n - 1$ we cannot find such a positive number $k$.