2015 Bundeswettbewerb Mathematik Germany

Round 1

1

Twelve 1-Euro-coins are laid flat on a table, such that their midpoints form a regular $12$-gon. Adjacent coins are tangent to each other. Prove that it is possible to put another seven such coins into the interior of the ring of the twelve coins.

2

A sum of $335$ pairwise distinct positive integers equals $100000$. a) What is the least number of uneven integers in that sum? b) What is the greatest number of uneven integers in that sum?

3

Let $M$ be the midpoint of segment $[AB]$ in triangle $\triangle ABC$. Let $X$ and $Y$ be points such that $\angle{BAX}=\angle{ACM}$ and $\angle{BYA}=\angle{MCB}$. Both points, $X$ and $Y$, are on the same side as $C$ with respect to line $AB$. Show that the rays $[AX$ and $[BY$ intersect on line $CM$.

4

Many people use the social network "BWM". It is known that: By choosing any four people of that network there always is one that is a friend of the other three. Is it then true that by choosing any four people there always is one that is a friend of everyone in "BWM"? Note: If member $A$ is a friend of member $B$, then member $B$ also is a friend of member $A$.

Round 2

1

Let $a,b$ be positive even integers. A rectangle with side lengths $a$ and $b$ is split into $a \cdot b$ unit squares. Anja and Bernd take turns and in each turn they color a square that is made of those unit squares. The person that can't color anymore, loses. Anja starts. Find all pairs $(a,b)$, such that she can win for sure. Extension: Solve the problem for positive integers $a,b$ that don't necessarily have to be even. Note: The extension actually was proposed at first. But since this is a homework competition that goes over three months and some cases were weird, the problem was changed to even integers.

2

In the decimal expansion of a fraction $\frac{m}{n}$ with positive integers $m$ and $n$ you can find a string of numbers $7143$ after the comma. Show $n>1250$. Example: I mean something like $0.7143$.

3

Each of the positive integers $1,2,\dots,n$ is colored in one of the colors red, blue or yellow regarding the following rules: (1) A Number $x$ and the smallest number larger than $x$ colored in the same color as $x$ always have different parities. (2) If all colors are used in a coloring, then there is exactly one color, such that the smallest number in that color is even. Find the number of possible colorings.

4

Let $ABC$ be a triangle, such that its incenter $I$ and circumcenter $U$ are distinct. For all points $X$ in the interior of the triangle let $d(X)$ be the sum of distances from $X$ to the three (possibly extended) sides of the triangle. Prove: If two distinct points $P,Q$ in the interior of the triangle $ABC$ satisfy $d(P)=d(Q)$, then $PQ$ is perpendicular to $UI$.