2005 JBMO Shortlist

Geometry

1

Let $ABC$ be an acute-angled triangle inscribed in a circle $k$. It is given that the tangent from $A$ to the circle meets the line $BC$ at point $P$. Let $M$ be the midpoint of the line segment $AP$ and $R$ be the second intersection point of the circle $k$ with the line $BM$. The line $PR$ meets again the circle $k$ at point $S$ different from $R$. Prove that the lines $AP$ and $CS$ are parallel.

2

Let $ABCD$ be an isosceles trapezoid with $AB=AD=BC, AB//CD, AB>CD$. Let $E= AC \cap BD$ and $N$ symmetric to $B$ wrt $AC$. Prove that the quadrilateral $ANDE$ is cyclic.

3

Let $ABCDEF$ be a regular hexagon and $M\in (DE)$, $N\in(CD)$ such that $m (\widehat {AMN}) = 90^\circ$ and $AN = CM \sqrt {2}$. Find the value of $\frac{DM}{ME}$.

4

Let $ABC$ be an isosceles triangle $(AB=AC)$ so that $\angle A< 2 \angle B$ . Let $D,Z $ points on the extension of height $AM$ so that $\angle CBD = \angle A$ and $\angle ZBA = 90^\circ$. Let $E$ the orthogonal projection of $M$ on height $BF$, and let $K$ the orthogonal projection of $Z$ on $AE$. Prove that $ \angle KDZ = \angle KDB = \angle KZB$.

5

Let $O$ be the center of the concentric circles $C_1,C_2$ of radii $3$ and $5$ respectively. Let $A\in C_1, B\in C_2$ and $C$ point so that triangle $ABC$ is equilateral. Find the maximum length of $ [OC] $.

6

Let $C_1,C_2$ be two circles intersecting at points $A,P$ with centers $O,K$ respectively. Let $B,C$ be the symmetric of $A$ wrt $O,K$ in circles $C_1,C_2 $ respectively. A random line passing through $A$ intersects circles $C_1,C_2$ at $D,E$ respectively. Prove that the center of circumcircle of triangle $DEP$ lies on the circumcircle of triangle $OKP$.

7

Let $ABCD$ be a parallelogram. $P \in (CD), Q \in (AB)$, $M= AP \cap DQ$, $N=BP \cap CQ$, $ K=MN \cap AD$, $L= MN \cap BC$. Prove that $BL=DK$.