Let $\phi(n)$ be the number of positive integers less than $n$ that are relatively prime to $n$, where $n$ is a positive integer. Find all pairs of positive integers $(m,n)$ such that \[2^n + (n-\phi(n)-1)! = n^m+1.\]
2013 Turkey Team Selection Test
March 30th - Day 1
We put pebbles on some unit squares of a $2013 \times 2013$ chessboard such that every unit square contains at most one pebble. Determine the minimum number of pebbles on the chessboard, if each $19\times 19$ square formed by unit squares contains at least $21$ pebbles.
Let $O$ be the circumcenter and $I$ be the incenter of an acute triangle $ABC$ with $m(\widehat{B}) \neq m(\widehat{C})$. Let $D$, $E$, $F$ be the midpoints of the sides $[BC]$, $[CA]$, $[AB]$, respectively. Let $T$ be the foot of perpendicular from $I$ to $[AB]$. Let $P$ be the circumcenter of the triangle $DEF$ and $Q$ be the midpoint of $[OI]$. If $A$, $P$, $Q$ are collinear, prove that \[\dfrac{|AO|}{|OD|}-\dfrac{|BC|}{|AT|}=4.\]
March 31st - Day 2
Find all pairs of integers $(m,n)$ such that $m^6 = n^{n+1} + n -1$.
Let the incircle of the triangle $ABC$ touch $[BC]$ at $D$ and $I$ be the incenter of the triangle. Let $T$ be midpoint of $[ID]$. Let the perpendicular from $I$ to $AD$ meet $AB$ and $AC$ at $K$ and $L$, respectively. Let the perpendicular from $T$ to $AD$ meet $AB$ and $AC$ at $M$ and $N$, respectively. Show that $|KM|\cdot |LN|=|BM|\cdot|CN|$.
For all real numbers $x,y,z$ such that $-2\leq x,y,z \leq 2$ and $x^2+y^2+z^2+xyz = 4$, determine the least real number $K$ satisfying \[\dfrac{z(xz+yz+y)}{xy+y^2+z^2+1} \leq K.\]
April 1st - Day 3
Let $E$ be intersection of the diagonals of convex quadrilateral $ABCD$. It is given that $m(\widehat{EDC}) = m(\widehat{DEC})=m(\widehat{BAD})$. If $F$ is a point on $[BC]$ such that $m(\widehat{BAF}) + m(\widehat{EBF})=m(\widehat{BFE})$, show that $A$, $B$, $F$, $D$ are concyclic.
Determine all functions $f:\mathbf{R} \rightarrow \mathbf{R}^+$ such that for all real numbers $x,y$ the following conditions hold: $\begin{array}{rl} i. & f(x^2) = f(x)^2 -2xf(x) \\ ii. & f(-x) = f(x-1)\\ iii. & 1<x<y \Longrightarrow f(x) < f(y). \end{array}$
Some cities of a country consisting of $n$ cities are connected by round trip flights so that there are at least $k$ flights from any city and any city is reachable from any city. Prove that for any such flight organization these flights can be distributed among $n-k$ air companies so that one can reach any city from any city by using of at most one flight of each air company.