Let $M = \{(a,b,c,d)|a,b,c,d \in \{1,2,3,4\} \text{ and } abcd > 1\}$. For each $n\in \{1,2,\dots, 254\}$, the sequence $(a_1, b_1, c_1, d_1)$, $(a_2, b_2, c_2, d_2)$, $\dots$, $(a_{255}, b_{255},c_{255},d_{255})$ contains each element of $M$ exactly once and the equality \[|a_{n+1} - a_n|+|b_{n+1} - b_n|+|c_{n+1} - c_n|+|d_{n+1} - d_n| = 1\] holds. If $c_1 = d_1 = 1$, find all possible values of the pair $(a_1,b_1)$.
2003 Turkey Team Selection Test
Day 1
Let $K$ be the intersection of the diagonals of a convex quadrilateral $ABCD$. Let $L\in [AD]$, $M \in [AC]$, $N \in [BC]$ such that $KL\parallel AB$, $LM\parallel DC$, $MN\parallel AB$. Show that \[\dfrac{Area(KLMN)}{Area(ABCD)} < \dfrac {8}{27}.\]
Is there an arithmetic sequence with a. $2003$ b. infinitely many terms such that each term is a power of a natural number with a degree greater than $1$?
Day 2
Find the least a. positive real number b. positive integer $t$ such that the equation $(x^2+y^2)^2 + 2tx(x^2 + y^2) = t^2y^2$ has a solution where $x,y$ are positive integers.
Let $A$ be a point on a circle with center $O$ and $B$ be the midpoint of $[OA]$. Let $C$ and $D$ be points on the circle such that they lie on the same side of the line $OA$ and $\widehat{CBO} = \widehat{DBA}$. Show that the reflection of the midpoint of $[CD]$ over $B$ lies on the circle.
For all positive integers $n$, let $p(n)$ be the number of non-decreasing sequences of positive integers such that for each sequence, the sum of all terms of the sequence is equal to $n$. Prove that \[\dfrac{1+p(1)+p(2) + \dots + p(n-1)}{p(n)} \leq \sqrt {2n}.\]