1999 Turkey Team Selection Test

Day 1

1

Let $m \leq n$ be positive integers and $p$ be a prime. Let $p-$expansions of $m$ and $n$ be \[m = a_0 + a_1p + \dots + a_rp^r\]\[n = b_0 + b_1p + \dots + b_sp^s\] respectively, where $a_r, b_s \neq 0$, for all $i \in \{0,1,\dots,r\}$ and for all $j \in \{0,1,\dots,s\}$, we have $0 \leq a_i, b_j \leq p-1$ . If $a_i \leq b_i$ for all $i \in \{0,1,\dots,r\}$, we write $ m \prec_p n$. Prove that \[p \nmid {{n}\choose{m}} \Leftrightarrow m \prec_p n\].

2

Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.

3

Determine all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that the set \[\left \{ \frac{f(x)}{x}: x \neq 0 \textnormal{ and } x \in \mathbb{R}\right \}\] is finite, and for all $x \in \mathbb{R}$ \[f(x-1-f(x)) = f(x) - x - 1\]

Day 2

1

Let the area and the perimeter of a cyclic quadrilateral $C$ be $A_C$ and $P_C$, respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of $C$ at the vertices of $C$ are $A_T$ and $P_T$ , respectively, prove that $\frac{A_C}{A_T} \geq \left (\frac{P_C}{P_T}\right )^2$.

2

Each of $A$, $B$, $C$, $D$, $E$, and $F$ knows a piece of gossip. They communicate by telephone via a central switchboard, which can connect only two of them at a time. During a conversation, each side tells the other everything he or she knows at that point. Determine the minimum number of calls for everyone to know all six pieces of gossip.

3

Prove that the plane is not a union of the inner regions of finitely many parabolas. (The outer region of a parabola is the union of the lines not intersecting the parabola. The inner region of a parabola is the set of points of the plane that do not belong to the outer region of the parabola)