2017 India Regional Mathematical Olympiad

1

Let \(AOB\) be a given angle less than \(180^{\circ}\) and let \(P\) be an interior point of the angular region determined by \(\angle AOB\). Show, with proof, how to construct, using only ruler and compass, a line segment \(CD\) passing through \(P\) such that \(C\) lies on the way \(OA\) and \(D\) lies on the ray \(OB\), and \(CP:PD=1:2\).

2

Show that the equation \(a^3+(a+1)^3+\ldots+(a+6)^3=b^4+(b+1)^4\) has no solutions in integers \(a,b\).

3

Let \(P(x)=x^2+\dfrac x 2 +b\) and \(Q(x)=x^2+cx+d\) be two polynomials with real coefficients such that \(P(x)Q(x)=Q(P(x))\) for all real \(x\). Find all real roots of \(P(Q(x))=0\).

4

Consider \(n^2\) unit squares in the \(xy\) plane centered at point \((i,j)\) with integer coordinates, \(1 \leq i \leq n\), \(1 \leq j \leq n\). It is required to colour each unit square in such a way that whenever \(1 \leq i < j \leq n\) and \(1 \leq k < l \leq n\), the three squares with centres at \((i,k),(j,k),(j,l)\) have distinct colours. What is the least possible number of colours needed?

5

Let \(\Omega\) be a circle with a chord \(AB\) which is not a diameter. \(\Gamma_{1}\) be a circle on one side of \(AB\) such that it is tangent to \(AB\) at \(C\) and internally tangent to \(\Omega\) at \(D\). Likewise, let \(\Gamma_{2}\) be a circle on the other side of \(AB\) such that it is tangent to \(AB\) at \(E\) and internally tangent to \(\Omega\) at \(F\). Suppose the line \(DC\) intersects \(\Omega\) at \(X \neq D\) and the line \(FE\) intersects \(\Omega\) at \(Y \neq F\). Prove that \(XY\) is a diameter of \(\Omega\) .

6

Let \(x,y,z\) be real numbers, each greater than \(1\). Prove that \(\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1} \leq \dfrac{x-1}{y-1}+\dfrac{y-1}{z-1}+\dfrac{z-1}{x-1}\).