The circles $k_1, k_2, k_3$ with radii ($a>c>b$) $a,b,c$ are tangent to line $d$ at $A,B,C$, respectively. $k_1$ is tangent to $k_2$, and $k_2$ is tangent to $k_3$. The tangent line to $k_3$ at $E$ is parallel to $d$, and it meets $k_1$ at $D$. The line perpendicular to $d$ at $A$ meets line $EB$ at $F$. Prove that $AD=AF$.
1990 Turkey Team Selection Test
May 6th
For real numbers $x_i$, the statement \[ x_1 + x_2 + x_3 = 0 \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 \leq 0\] is always true. (Prove!) For which $n\geq 4$ integers, the statement \[x_1 + x_2 + \dots + x_n = 0 \Rightarrow x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \leq 0\] is always true. Justify your answer.
Let $n$ be an odd integer greater than $11$; $k\in \mathbb{N}$, $k \geq 6$, $n=2k-1$. We define \[d(x,y) = \left | \{ i\in \{1,2,\dots, n \} \bigm | x_i \neq y_i \} \right |\] for $T=\{ (x_1, x_2, \dots, x_n) \bigm | x_i \in \{0,1\}, i=1,2,\dots, n \}$ and $x=(x_1,x_2,\dots, x_n), y=(y_1, y_2, \dots, y_n) \in T$. Show that $n=23$ if $T$ has a subset $S$ satisfying $|S|=2^k$ For each $x \in T$, there exists exacly one $y\in S$ such that $d(x,y)\leq 3$
Let $ABCD$ be a convex quadrilateral such that \[\begin{array}{rl} E,F \in [AB],& AE = EF = FB \\ G,H \in [BC],& BG = GH = HC \\ K,L \in [CD],& CK = KL = LD \\ M,N \in [DA],& DM = MN = NA \end{array}\] Let \[[NG] \cap [LE] = \{P\}, [NG]\cap [KF] = \{Q\},\] \[{[}MH] \cap [KF] = \{R\}, [MH]\cap [LE]=\{S\}\] Prove that $Area(ABCD) = 9 \cdot Area(PQRS)$ $NP=PQ=QG$
Let $b_m$ be numbers of factors $2$ of the number $m!$ (that is, $2^{b_m}|m!$ and $2^{b_m+1}\nmid m!$). Find the least $m$ such that $m-b_m = 1990$.
Let $k\geq 2$ and $n_1, \dots, n_k \in \mathbf{Z}^+$. If $n_2 | (2^{n_1} -1)$, $n_3 | (2^{n_2} -1)$, $\dots$, $n_k | (2^{n_{k-1}} -1)$, $n_1 | (2^{n_k} -1)$, show that $n_1 = \dots = n_k =1$.