Let $a,b,c$ be positive real numbers such that $ab+bc+ca=1$. Prove that \[\sqrt[4]{\frac{\sqrt{3}}{a}+6\sqrt{3}b}+\sqrt[4]{\frac{\sqrt{3}}{b}+6\sqrt{3}c}+\sqrt[4]{\frac{\sqrt{3}}{c}+6\sqrt{3}a}\le\frac{1}{abc}\] When does inequality hold?
2013 Hong kong National Olympiad
December 14th
For any positive integer $a$, define $M(a)$ to be the number of positive integers $b$ for which $a+b$ divides $ab$. Find all integer(s) $a$ with $1\le a\le 2013$ such that $M(a)$ attains the largest possible value in the range of $a$.
Let $ABC$ be a triangle with $CA>BC>AB$. Let $O$ and $H$ be the circumcentre and orthocentre of triangle $ABC$ respectively. Denote by $D$ and $E$ the midpoints of the arcs $AB$ and $AC$ of the circumcircle of triangle $ABC$ not containing the opposite vertices. Let $D'$ be the reflection of $D$ about $AB$ and $E'$ the reflection of $E$ about $AC$. Prove that $O,H,D',E'$ are concylic if and only if $A,D',E'$ are collinear.
In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ admires $B$ in that set if i) $A$ does not beat $B$; or ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$. A set of four players is said to be harmonic if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.