2006 Hong kong National Olympiad

1

A subset $M$ of $\{1, 2, . . . , 2006\}$ has the property that for any three elements $x, y, z$ of $M$ with $x < y < z$, $x+ y$ does not divide $z$. Determine the largest possible size of $M$.

2

For a positive integer $k$, let $f_1(k)$ be the square of the sum of the digits of $k$. Define $f_{n+1}$ = $f_1 \circ f_n$ . Evaluate $f_{2007}(2^{2006} )$.

3

A convex quadrilateral $ABCD$ with $AC \neq BD$ is inscribed in a circle with center $O$. Let $E$ be the intersection of diagonals $AC$ and $BD$. If $P$ is a point inside $ABCD$ such that $\angle PAB+\angle PCB=\angle PBC+\angle PDC=90^\circ$, prove that $O$, $P$ and $E$ are collinear.

4

Let $(a_n)_{n\ge 1}$ be a sequence of positive numbers. If there is a constant $M > 0$ such that $a_2^2 + a_2^2 +\ldots + a_n^2 < Ma_{n+1}^2$ for all $n$, then prove that there is a constant $M ' > 0$ such that $a_1 + a_2 +\ldots + a_n < M ' a_{n+1}$ .