2012 France Team Selection Test

March 10th - Day 1

1

Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$). 1) If $k=2n+1$, prove that there exists a person who knows all others. 2) If $k=2n+2$, give an example of such a group in which no-one knows all others.

2

Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.

3

Let $p$ be a prime number. Find all positive integers $a,b,c\ge 1$ such that: \[a^p+b^p=p^c.\]

March 11th - Day 2

1

Let $k>1$ be an integer. A function $f:\mathbb{N^*}\to\mathbb{N^*}$ is called $k$-tastrophic when for every integer $n>0$, we have $f_k(n)=n^k$ where $f_k$ is the $k$-th iteration of $f$: \[f_k(n)=\underbrace{f\circ f\circ\cdots \circ f}_{k\text{ times}}(n)\] For which $k$ does there exist a $k$-tastrophic function?

2

Determine all non-constant polynomials $X^n+a_{n-1}X^{n-1}+\cdots +a_1X+a_0$ with integer coefficients for which the roots are exactly the numbers $a_0,a_1,\ldots ,a_{n-1}$ (with multiplicity).

3

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. Proposed by Carlos Yuzo Shine, Brazil