In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$. a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$. b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.
2002 France Team Selection Test
Day 1
Consider the set $S$ of integers $k$ which are products of four distinct primes. Such an integer $k=p_1p_2p_3p_4$ has $16$ positive divisors $1=d_1<d_2<\ldots <d_{15}<d_{16}=k$. Find all elements of $S$ less than $2002$ such that $d_9-d_8=22$.
Let $n$ be a positive integer and let $(a_1,a_2,\ldots ,a_{2n})$ be a permutation of $1,2,\ldots ,2n$ such that the numbers $|a_{i+1}-a_i|$ are pairwise distinct for $i=1,\ldots ,2n-1$. Prove that $\{a_2,a_4,\ldots ,a_{2n}\}=\{1,2,\ldots ,n\}$ if and only if $a_1-a_{2n}=n$.
Day 2
There are three colleges in a town. Each college has $n$ students. Any student of any college knows $n+1$ students of the other two colleges. Prove that it is possible to choose a student from each of the three colleges so that all three students would know each other.
Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB+AC$.
Let $p\ge 3$ be a prime number. Show that there exist $p$ positive integers $a_1,a_2,\ldots ,a_p$ not exceeding $2p^2$ such that the $\frac{p(p-1)}{2}$ sums $a_i+a_j\ (i<j)$ are all distinct.