Let $p$ be an odd prime.Positive integers $a,b,c,d$ are less than $p$,and satisfy $p|a^2+b^2$ and $p|c^2+d^2$.Prove that exactly one of $ac+bd$ and $ad+bc$ is divisible by $p$
2014 South East Mathematical Olympiad
Grade level 10
July 27th - Day 1
Let $n\geq 4$ be a positive integer.Out of $n$ people,each of two individuals play table tennis game(every game has a winner).Find the minimum value of $n$,such that for any possible outcome of the game,there always exist an ordered four people group $(a_{1},a_{2},a_{3},a_{4})$,such that the person $a_{i}$ wins against $a_{j}$ for any $1\leq i<j\leq 4$
In an obtuse triangle $ABC$ $(AB>AC)$,$O$ is the circumcentre and $D,E,F$ are the midpoints of $BC,CA,AB$ respectively.Median $AD$ intersects $OF$ and $OE$ at $M$ and $N$ respectively.$BM$ meets $CN$ at point $P$.Prove that $OP\perp AP$
Let $x_1,x_2,\cdots,x_n$ be non-negative real numbers such that $x_ix_j\le 4^{-|i-j|}$ $(1\le i,j\le n)$. Prove that\[x_1+x_2+\cdots+x_n\le \frac{5}{3}.\]
July 28th - Day 2
Let $\triangle ABC $ and $\triangle A'B'C'$ are acute triangles.Prove that\[Max\{cotA'(cotB+cotC),cotB'(cotC+cotA),cotC'(cotA+cotB)\}\ge \frac{2}{3}.\]
Let $a,b$ and $c$ be integers and $r$ a real number such that $ar^2+br+c=0$ with $ac\not =0$.Prove that $\sqrt{r^2+c^2}$ is an irrational number
Let $\omega_{1}$ be a circle with centre $O$. $P$ is a point on $\omega_{1}$. $\omega_{2}$ is a circle with centre $P$, with radius smaller than $\omega_{1}$. $\omega_{1}$ meets $\omega_{2}$ at points $T$ and $Q$. Let $TR$ be a diameter of $\omega_{2}$. Draw another two circles with $RQ$ as the radius, $R$ and $P$ as the centres. These two circles meet at point $M$, with $M$ and $Q$ lie on the same side of $PR$. A circle with centre $M$ and radius $MR$ intersects $\omega_{2}$ at $R$ and $N$. Prove that a circle with centre $T$ and radius $TN$ passes through $O$.
Define a figure which is constructed by unit squares "cross star" if it satisfies the following conditions: $(1)$Square bar $AB$ is bisected by square bar $CD$ $(2)$At least one square of $AB$ lay on both sides of $CD$ $(3)$At least one square of $CD$ lay on both sides of $AB$ There is a rectangular grid sheet composed of $38\times 53=2014$ squares,find the number of such cross star in this rectangle sheet
Grade level 11
July 27th - Day 1
Let $ABC$ be a triangle with $AB<AC$ and let $M $ be the midpoint of $BC$. $MI$ ($I$ incenter) intersects $AB$ at $D$ and $CI$ intersects the circumcircle of $ABC$ at $E$. Prove that $\frac{ED }{ EI} = \frac{IB }{IC}$ .source, translated by Antreas Hatzipolakis in fb, corrected by me in order to be compatible with it's figure
Let $n\geq 4$ be a positive integer.Out of $n$ people,each of two individuals play table tennis game(every game has a winner).Find the minimum value of $n$,such that for any possible outcome of the game,there always exist an ordered four people group $(a_{1},a_{2},a_{3},a_{4})$,such that the person $a_{i}$ wins against $a_{j}$ for any $1\leq i<j\leq 4$
Let $p$ be a primes ,$x,y,z $ be positive integers such that $x<y<z<p$ and $\{\frac{x^3}{p}\}=\{\frac{y^3}{p}\}=\{\frac{z^3}{p}\}$. Prove that $(x+y+z)|(x^5+y^5+z^5).$
Let $x_1,x_2,\cdots,x_n$ be non-negative real numbers such that $x_ix_j\le 4^{-|i-j|}$ $(1\le i,j\le n)$. Prove that\[x_1+x_2+\cdots+x_n\le \frac{5}{3}.\]
August 28th - Day 2
Let $x_1,x_2,\cdots,x_n$ be positive real numbers such that $x_1+x_2+\cdots+x_n=1$ $(n\ge 2)$. Prove that\[\sum_{i=1}^n\frac{x_i}{x_{i+1}-x^3_{i+1}}\ge \frac{n^3}{n^2-1}.\]here $x_{n+1}=x_1.$
Let $\omega_{1}$ be a circle with centre $O$. $P$ is a point on $\omega_{1}$. $\omega_{2}$ is a circle with centre $P$, with radius smaller than $\omega_{1}$. $\omega_{1}$ meets $\omega_{2}$ at points $T$ and $Q$. Let $TR$ be a diameter of $\omega_{2}$. Draw another two circles with $RQ$ as the radius, $R$ and $P$ as the centres. These two circles meet at point $M$, with $M$ and $Q$ lie on the same side of $PR$. A circle with centre $M$ and radius $MR$ intersects $\omega_{2}$ at $R$ and $N$. Prove that a circle with centre $T$ and radius $TN$ passes through $O$.
Show that there are infinitely many triples of positive integers $(a_i,b_i,c_i)$, $i=1,2,3,\ldots$, satisfying the equation $a^2+b^2=c^4$, such that $c_n$ and $c_{n+1}$ are coprime for any positive integer $n$.
Define a figure which is constructed by unit squares "cross star" if it satisfies the following conditions: $(1)$Square bar $AB$ is bisected by square bar $CD$ $(2)$At least one square of $AB$ lay on both sides of $CD$ $(3)$At least one square of $CD$ lay on both sides of $AB$ There is a rectangular grid sheet composed of $38\times 53=2014$ squares,find the number of such cross star in this rectangle sheet