Determine the number of real number $a$, such that for every $a$, equation $x^3=ax+a+1$ has a root $x_0$ satisfying following conditions: (a) $x_0$ is an even integer; (b) $|x_0|<1000$.
2007 South East Mathematical Olympiad
Day 1
$AB$ is the diameter of semicircle $O$. $C$,$D$ are two arbitrary points on semicircle $O$. Point $P$ lies on line $CD$ such that line $PB$ is tangent to semicircle $O$ at $B$. Line $PO$ intersects line $CA$, $AD$ at point $E$, $F$ respectively. Prove that $OE$=$OF$.
Let $a_i=min\{ k+\dfrac{i}{k}|k \in N^*\}$, determine the value of $S_{n^2}=[a_1]+[a_2]+\cdots +[a_{n^2}]$, where $n\ge 2$ . ($[x]$ denotes the greatest integer not exceeding x)
A sequence of positive integers with $n$ terms satisfies $\sum_{i=1}^{n} a_i=2007$. Find the least positive integer $n$ such that there exist some consecutive terms in the sequence with their sum equal to $30$.
Day 2
Let $f(x)$ be a function satisfying $f(x+1)-f(x)=2x+1 (x \in \mathbb{R})$.In addition, $|f(x)|\le 1$ holds for $x\in [0,1]$. Prove that $|f(x)|\le 2+x^2$ holds for $x \in \mathbb{R}$.
In right-angle triangle $ABC$, $\angle C=90$°, Point $D$ is the midpoint of side $AB$. Points $M$ and $C$ lie on the same side of $AB$ such that $MB\bot AB$, line $MD$ intersects side $AC$ at $N$, line $MC$ intersects side $AB$ at $E$. Show that $\angle DBN=\angle BCE$.
Find all triples $(a,b,c)$ satisfying the following conditions: (i) $a,b,c$ are prime numbers, where $a<b<c<100$. (ii) $a+1,b+1,c+1$ form a geometric sequence.
Let $a$,$b$,$c$ be positive real numbers satisfying $abc=1$. Prove that inequality $\dfrac{a^k}{a+b}+ \dfrac{b^k}{b+c}+\dfrac{c^k}{c+a}\ge \dfrac{3}{2}$ holds for all integer $k$ ($k \ge 2$).