Given complex numbers $a, b, c$, let $|a+b|=m, |a-b|=n$. If $mn \neq 0$, Show that \[\max \{|ac+b|,|a+bc|\} \geq \frac{mn}{\sqrt{m^2+n^2}}\]
2007 China National Olympiad
Day 1
Show that: 1) If $2n-1$ is a prime number, then for any $n$ pairwise distinct positive integers $a_1, a_2, \ldots , a_n$, there exists $i, j \in \{1, 2, \ldots , n\}$ such that \[\frac{a_i+a_j}{(a_i,a_j)} \geq 2n-1\] 2) If $2n-1$ is a composite number, then there exists $n$ pairwise distinct positive integers $a_1, a_2, \ldots , a_n$, such that for any $i, j \in \{1, 2, \ldots , n\}$ we have \[\frac{a_i+a_j}{(a_i,a_j)} < 2n-1\] Here $(x,y)$ denotes the greatest common divisor of $x,y$.
Let $a_1, a_2, \ldots , a_{11}$ be 11 pairwise distinct positive integer with sum less than 2007. Let S be the sequence of $1,2, \ldots ,2007$. Define an operation to be 22 consecutive applications of the following steps on the sequence $S$: on $i$-th step, choose a number from the sequense $S$ at random, say $x$. If $1 \leq i \leq 11$, replace $x$ with $x+a_i$ ; if $12 \leq i \leq 22$, replace $x$ with $x-a_{i-11}$ . If the result of operation on the sequence $S$ is an odd permutation of $\{1, 2, \ldots , 2007\}$, it is an odd operation; if the result of operation on the sequence $S$ is an even permutation of $\{1, 2, \ldots , 2007\}$, it is an even operation. Which is larger, the number of odd operation or the number of even permutation? And by how many? Here $\{x_1, x_2, \ldots , x_{2007}\}$ is an even permutation of $\{1, 2, \ldots ,2007\}$ if the product $\prod_{i > j} (x_i - x_j)$ is positive, and an odd one otherwise.
Day 2
Let $O, I$ be the circumcenter and incenter of triangle $ABC$. The incircle of $\triangle ABC$ touches $BC, CA, AB$ at points $D, E, F$ repsectively. $FD$ meets $CA$ at $P$, $ED$ meets $AB$ at $Q$. $M$ and $N$ are midpoints of $PE$ and $QF$ respectively. Show that $OI \perp MN$.
Let $\{a_n\}_{n \geq 1}$ be a bounded sequence satisfying \[a_n < \displaystyle\sum_{k=a}^{2n+2006} \frac{a_k}{k+1} + \frac{1}{2n+2007} \quad \forall \quad n = 1, 2, 3, \ldots \] Show that \[a_n < \frac{1}{n} \quad \forall \quad n = 1, 2, 3, \ldots\]
Find a number $n \geq 9$ such that for any $n$ numbers, not necessarily distinct, $a_1,a_2, \ldots , a_n$, there exists 9 numbers $a_{i_1}, a_{i_2}, \ldots , a_{i_9}, (1 \leq i_1 < i_2 < \ldots < i_9 \leq n)$ and $b_i \in {4,7}, i =1, 2, \ldots , 9$ such that $b_1a_{i_1} + b_2a_{i_2} + \ldots + b_9a_{i_9}$ is a multiple of 9.