Let $EFGH,ABCD$ and $E_1F_1G_1H_1$ be three convex quadrilaterals satisfying: i) The points $E,F,G$ and $H$ lie on the sides $AB,BC,CD$ and $DA$ respectively, and $\frac{AE}{EB}\cdot\frac{BF}{FC}\cdot \frac{CG}{GD}\cdot \frac{DH}{HA}=1$; ii) The points $A,B,C$ and $D$ lie on sides $H_1E_1,E_1F_1,F_1,G_1$ and $G_1H_1$ respectively, and $E_1F_1||EF,F_1G_1||FG,G_1H_1||GH,H_1E_1||HE$. Suppose that $\frac{E_1A}{AH_1}=\lambda$. Find an expression for $\frac{F_1C}{CG_1}$ in terms of $\lambda$. Xiong Bin
2004 China National Olympiad
Day 1
Let $c$ be a positive integer. Consider the sequence $x_1,x_2,\ldots$ which satisfies $x_1=c$ and, for $n\ge 2$, \[x_n=x_{n-1}+\left\lfloor\frac{2x_{n-1}-(n+2)}{n}\right\rfloor+1\] where $\lfloor x\rfloor$ denotes the largest integer not greater than $x$. Determine an expression for $x_n$ in terms of $n$ and $c$. Huang Yumin
Let $M$ be a set consisting of $n$ points in the plane, satisfying: i) there exist $7$ points in $M$ which constitute the vertices of a convex heptagon; ii) if for any $5$ points in $M$ which constitute the vertices of a convex pentagon, then there is a point in $M$ which lies in the interior of the pentagon. Find the minimum value of $n$. Leng Gangsong
Day 2
For a given real number $a$ and a positive integer $n$, prove that: i) there exists exactly one sequence of real numbers $x_0,x_1,\ldots,x_n,x_{n+1}$ such that \[\begin{cases} x_0=x_{n+1}=0,\\ \frac{1}{2}(x_i+x_{i+1})=x_i+x_i^3-a^3,\ i=1,2,\ldots,n.\end{cases}\] ii) the sequence $x_0,x_1,\ldots,x_n,x_{n+1}$ in i) satisfies $|x_i|\le |a|$ where $i=0,1,\ldots,n+1$. Liang Yengde
For a given positive integer $n\ge 2$, suppose positive integers $a_i$ where $1\le i\le n$ satisfy $a_1<a_2<\ldots <a_n$ and $\sum_{i=1}^n \frac{1}{a_i}\le 1$. Prove that, for any real number $x$, the following inequality holds \[\left(\sum_{i=1}^n\frac{1}{a_i^2+x^2}\right)^2\le\frac{1}{2}\cdot\frac{1}{a_1(a_1-1)+x^2} \] Li Shenghong
Prove that every positive integer $n$, except a finite number of them, can be represented as a sum of $2004$ positive integers: $n=a_1+a_2+\cdots +a_{2004}$, where $1\le a_1<a_2<\cdots <a_{2004}$, and $a_i \mid a_{i+1}$ for all $1\le i\le 2003$. Chen Yonggao