$N$ denotes the set of all natural numbers. Define a function $T: N \to N$ such that $T (2k) = k$ and $T (2k + 1) = 2k + 2$. We write $T^2 (n) = T (T (n))$ and in general $T^k (n) = T^{k-1} (T (n))$ for all $k> 1$. (a) Prove that for every $n \in N$, there exists $k$ such that $T^k (n) = 1$. (b) For $k \in N$, $c_k$ denotes the number of elements in the set $\{n: T^k (n) = 1\}$. Prove that $c_{k + 2} = c_{k + 1} + c_k$, for $1 \le k$.