Since $x,y \in \left[1,\frac{3}{2} \right]$ the $ 3-2x $ and $3-2y$ are positive.
So, we can apply A.M.-G.M. inequality, to get
$$ \frac{x^2 + (3-2y)}{2} \enspace \quad \geq \quad \enspace x\sqrt{3-2y}$$
and
$$ \frac{y^2 +(3-2x)}{2} \enspace \quad \geq \quad \enspace y\sqrt{3-2x}$$
Adding above two inequalities, we have
$$\frac{x^2+3-2y+y^2+3-2x}{2} \quad \enspace \geq \quad \enspace y\sqrt{3-2x}+x\sqrt{3-2y}$$
Therefore, it suffices to show that
$$x^2 \enspace + \enspace y^2 \quad \geq \quad \frac{x^2+3-2y+y^2+3-2x}{2}$$
$$ \iff \quad \quad x^2 \enspace+ \enspace 2x \enspace - \enspace 3 \enspace + \enspace y^2 \enspace + \enspace 2y \enspace - \enspace 3 \quad \geq \quad 0$$
$$ \iff \quad \quad (x-1)(x+3) \enspace + \enspace (y-1)(y+3) \enspace \geq \enspace 0$$
which is true since $x,y \geq 1$.
Hence, proved.