Suppose that $n$ is a positive integer and that $a$ is the integer equal to $\frac{10^{2n}-1}{3\left(10^n+1\right)}.$ If the sum of the digits of $a$ is 567, what is the value of $n$?
Source:
Tags: CSMC, CSMC 2018
Suppose that $n$ is a positive integer and that $a$ is the integer equal to $\frac{10^{2n}-1}{3\left(10^n+1\right)}.$ If the sum of the digits of $a$ is 567, what is the value of $n$?