In a convex quadrilateral $ABCD$, $E$ is the intersection of $AB$ and $CD$, $F$ is the intersection of $AD$ and $BC$ and $G$ is the intersection of $AC$ and $EF$. Prove that the following two claims are equivalent: $(i)$ $BD$ and $EF$ are parallel. $(ii)$ $G$ is the midpoint of $EF$.
Problem
Source:
Tags: geometry
cobbler
31.03.2015 01:55
i) Any such quadrilateral $ABCD$ can be obtained from some triangle $AFE$ by drawing a cevian $DB$ ($D$ on $AF$ and $B$ on $AE$) parallel to $FE$ and joining $B$ to $F$ and $D$ to $E$, letting the intersection of these two segments be $C$. So this part of the problem reduces to showing that for any such cevian $DB$ in any triangle $AFE$, the midpoint $G$ of $FE$ lies on $AC$ extended.
ii) By above, this is equivalent to showing that in any triangle $AFE$ and any point $C$ on $AG$, where $G$ is the midpoint of $FE$, then if the intersection of $FC$ past $C$ with $AE$ is $B$ and the intersection of $EC$ past $C$ with $AF$ is $D$, then $DB$ is parallel to $FE$.
AlastorMoody
14.03.2019 19:16
Let $AC \cap BD=M$ and $EM \cap BC=X$
[asy][asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(13cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(13); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -24.498946978935827, xmax = 9.737361310785264, ymin = -4.690889826670544, ymax = 15.654457312711958; /* image dimensions */
pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882);
draw((-8.3,3.91)--(-1.28,5.13)--(2.18,-3.25)--(-9.871990625049701,-1.0196999847606336)--cycle, linewidth(2) + rvwvcq);
/* draw figures */
draw((-8.3,3.91)--(-1.28,5.13), linewidth(2) + rvwvcq);
draw((-1.28,5.13)--(2.18,-3.25), linewidth(2) + rvwvcq);
draw((2.18,-3.25)--(-9.871990625049701,-1.0196999847606336), linewidth(2) + rvwvcq);
draw((-9.871990625049701,-1.0196999847606336)--(-8.3,3.91), linewidth(2) + rvwvcq);
draw((-22.848332541718666,1.3816573075645637)--(-5.021403232613448,14.191548869740084), linewidth(1.2));
draw((-22.848332541718666,1.3816573075645637)--(-9.871990625049701,-1.0196999847606336), linewidth(1.2));
draw((-22.848332541718666,1.3816573075645637)--(-8.3,3.91), linewidth(1.2));
draw((-1.28,5.13)--(-5.021403232613448,14.191548869740084), linewidth(1.2));
draw((-5.021403232613448,14.191548869740084)--(-8.3,3.91), linewidth(1.2));
draw((-9.871990625049701,-1.0196999847606336)--(-1.28,5.13), linewidth(1.2));
draw((-22.848332541718666,1.3816573075645637)--(-0.09700775518795428,2.2648338116979936), linewidth(0.8) + linetype("4 4"));
draw((2.18,-3.25)--(-13.954005709535478,7.77285122903378), linewidth(1.2));
/* dots and labels */
dot((-8.3,3.91),dotstyle);
label("$A$", (-8.699732579662898,4.4855632968854255), NE * labelscalefactor);
dot((-1.28,5.13),dotstyle);
label("$B$", (-0.8141566539156627,5.187126991346892), NE * labelscalefactor);
dot((2.18,-3.25),dotstyle);
label("$C$", (2.4130363406072273,-3.905138488873703), NE * labelscalefactor);
dot((-9.871990625049701,-1.0196999847606336),dotstyle);
label("$D$", (-10.439610541927411,-1.7723848577108472), NE * labelscalefactor);
dot((-22.848332541718666,1.3816573075645637),linewidth(4pt) + dotstyle);
label("$E$", (-23.57288290224665,0.9496822767996393), NE * labelscalefactor);
dot((-5.021403232613448,14.191548869740084),linewidth(4pt) + dotstyle);
label("$F$", (-4.91128862957081,14.58808049713053), NE * labelscalefactor);
dot((-13.954005709535478,7.77285122903378),linewidth(4pt) + dotstyle);
label("$G$", (-14.3683672309118,8.302069794755798), NE * labelscalefactor);
dot((-5.580431945061905,2.0519744968171025),linewidth(4pt) + dotstyle);
label("$M$", (-5.865415254038447,2.689560239064074), NE * labelscalefactor);
dot((-0.09700775518795428,2.2648338116979936),linewidth(4pt) + dotstyle);
label("$X$", (0.47672054389349316,2.2686220223871945), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy][/asy]
$\bullet$ When $BD||EF$ Proof: $$-1=(C,B;X,F) \overset{M}{=} (G, \infty_{BD} ; E,F) \implies EG=FG$$$\bullet$ When $EG=FG$ Proof: Let $EF \cap BD=Z$, then, $$-1=(C,B;X,F) \overset{M}{=} (G,Z;E,F) \implies \boxed{Z \equiv \infty_{BD}} \implies BD||EF$$
amar_04
13.10.2019 21:39
Almost Similar to @above, but just took the perspective from a different point........ $\bullet$ When $G$ is the midpoint of $EF$. $-1=(A,C;AC\cap BD,G)\overset{B}{=}(E,F;BD\cap FE,G)\implies BD\|FE$ as $G$ is the midpoint of $EF$. $\bullet$ When $BD\|EF$. $1=(A,C;AC\cap BD,G)\overset{B}{=}(E,F;BD\cap FE,G)\implies G$ is the midpoint of $EF$ as $BD\|EF$.
TurtleKing123
25.04.2020 15:05
By Ceva's theorem we have:
$\frac{EM}{MF} \cdot \frac{FD}{FA} \cdot \frac{AB}{BE} =1$
But $BD$ || $EF \implies \frac{AD}{DF} = \frac{AB}{BE} $
So $\frac{EM}{MF} =1 \implies EM=MF$
$\boxed{Q.E.D}$