2012 China Team Selection Test

TST 1

Day 1

1

Complex numbers ${x_i},{y_i}$ satisfy $\left| {{x_i}} \right| = \left| {{y_i}} \right| = 1$ for $i=1,2,\ldots ,n$. Let $x=\frac{1}{n}\sum\limits_{i=1}^n{{x_i}}$, $y=\frac{1}{n}\sum\limits_{i=1}^n{{y_i}}$ and $z_i=x{y_i}+y{x_i}-{x_i}{y_i}$. Prove that $\sum\limits_{i=1}^n{\left| {{z_i}}\right|}\leqslant n$.

2

Given a scalene triangle $ABC$. Its incircle touches $BC,AC,AB$ at $D,E,F$ respectvely. Let $L,M,N$ be the symmetric points of $D$ with $EF$,of $E$ with $FD$,of $F$ with $DE$,respectively. Line $AL$ intersects $BC$ at $P$,line $BM$ intersects $CA$ at $Q$,line $CN$ intersects $AB$ at $R$. Prove that $P,Q,R$ are collinear.

3

Let $x_n=\binom{2n}{n}$ for all $n\in\mathbb{Z}^+$. Prove there exist infinitely many finite sets $A,B$ of positive integers, satisfying $A \cap B = \emptyset $, and \[\frac{{\prod\limits_{i \in A} {{x_i}} }}{{\prod\limits_{j\in B}{{x_j}} }}=2012.\]

Day 2

1

Given two circles ${\omega _1},{\omega _2}$, $S$ denotes all $\Delta ABC$ satisfies that ${\omega _1}$ is the circumcircle of $\Delta ABC$, ${\omega _2}$ is the $A$- excircle of $\Delta ABC$ , ${\omega _2}$ touches $BC,CA,AB$ at $D,E,F$. $S$ is not empty, prove that the centroid of $\Delta DEF$ is a fixed point.

2

For a positive integer $n$, denote by $\tau (n)$ the number of its positive divisors. For a positive integer $n$, if $\tau (m) < \tau (n)$ for all $m < n$, we call $n$ a good number. Prove that for any positive integer $k$, there are only finitely many good numbers not divisible by $k$.

3

$n$ being a given integer, find all functions $f\colon \mathbb{Z} \to \mathbb{Z}$, such that for all integers $x,y$ we have $f\left( {x + y + f(y)} \right) = f(x) + ny$.

TST 2

Day 1

1

In a simple graph $G$, we call $t$ pairwise adjacent vertices a $t$-clique. If a vertex is connected with all other vertices in the graph, we call it a central vertex. Given are two integers $n,k$ such that $\dfrac {3}{2} \leq \dfrac{1}{2} n < k < n$. Let $G$ be a graph on $n$ vertices such that (1) $G$ does not contain a $(k+1)$-clique; (2) if we add an arbitrary edge to $G$, that creates a $(k+1)$-clique. Find the least possible number of central vertices in $G$.

2

Prove that there exists a positive real number $C$ with the following property: for any integer $n\ge 2$ and any subset $X$ of the set $\{1,2,\ldots,n\}$ such that $|X|\ge 2$, there exist $x,y,z,w \in X$(not necessarily distinct) such that \[0<|xy-zw|<C\alpha ^{-4}\] where $\alpha =\frac{|X|}{n}$.

3

Let $a_1<a_2$ be two given integers. For any integer $n\ge 3$, let $a_n$ be the smallest integer which is larger than $a_{n-1}$ and can be uniquely represented as $a_i+a_j$, where $1\le i<j\le n-1$. Given that there are only a finite number of even numbers in $\{a_n\}$, prove that the sequence $\{a_{n+1}-a_{n}\}$ is eventually periodic, i.e. that there exist positive integers $T,N$ such that for all integers $n>N$, we have \[a_{T+n+1}-a_{T+n}=a_{n+1}-a_{n}.\]

Day 2

1

Given an integer $n\ge 2$. Prove that there only exist a finite number of n-tuples of positive integers $(a_1,a_2,\ldots,a_n)$ which simultaneously satisfy the following three conditions: $a_1>a_2>\ldots>a_n$; $\gcd (a_1,a_2,\ldots,a_n)=1$; $a_1=\sum_{i=1}^{n}\gcd (a_i,a_{i+1})$,where $a_{n+1}=a_1$.

2

Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression \[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]

3

Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called good, if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have \[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \] Find the number of good functions.

TST 3

Day 1

1

In an acute-angled $ABC$, $\angle A>60^{\circ}$, $H$ is its orthocenter. $M,N$ are two points on $AB,AC$ respectively, such that $\angle HMB=\angle HNC=60^{\circ}$. Let $O$ be the circumcenter of triangle $HMN$. $D$ is a point on the same side with $A$ of $BC$ such that $\triangle DBC$ is an equilateral triangle. Prove that $H,O,D$ are collinear.

2

Given an integer $k\ge 2$. Prove that there exist $k$ pairwise distinct positive integers $a_1,a_2,\ldots,a_k$ such that for any non-negative integers $b_1,b_2,\ldots,b_k,c_1,c_2,\ldots,c_k$ satisfying $a_1\le b_i\le 2a_i, i=1,2,\ldots,k$ and $\prod_{i=1}^{k}b_i^{c_i}<\prod_{i=1}^{k}b_i$, we have \[k\prod_{i=1}^{k}b_i^{c_i}<\prod_{i=1}^{k}b_i.\]

3

Find the smallest possible value of a real number $c$ such that for any $2012$-degree monic polynomial \[P(x)=x^{2012}+a_{2011}x^{2011}+\ldots+a_1x+a_0\]with real coefficients, we can obtain a new polynomial $Q(x)$ by multiplying some of its coefficients by $-1$ such that every root $z$ of $Q(x)$ satisfies the inequality \[ \left\lvert \operatorname{Im} z \right\rvert \le c \left\lvert \operatorname{Re} z \right\rvert. \]

Day 2

1

Given an integer $n\ge 4$. $S=\{1,2,\ldots,n\}$. $A,B$ are two subsets of $S$ such that for every pair of $(a,b),a\in A,b\in B, ab+1$ is a perfect square. Prove that \[\min \{|A|,|B|\}\le\log _2n.\]

2

Find all integers $k\ge 3$ with the following property: There exist integers $m,n$ such that $1<m<k$, $1<n<k$, $\gcd (m,k)=\gcd (n,k) =1$, $m+n>k$ and $k\mid (m-1)(n-1)$.

3

In some squares of a $2012\times 2012$ grid there are some beetles, such that no square contain more than one beetle. At one moment, all the beetles fly off the grid and then land on the grid again, also satisfying the condition that there is at most one beetle standing in each square. The vector from the centre of the square from which a beetle $B$ flies to the centre of the square on which it lands is called the translation vector of beetle $B$. For all possible starting and ending configurations, find the maximum length of the sum of the translation vectors of all beetles.