Given $n$ numbers different from $0$, ($n \in \mathbb{N}$) which are arranged randomly. We do the following operation: Choose some consecutive numbers in the given order and change their sign (i.e. $x \rightarrow -x$). What is the minimum number of operations needed, in order to make all the numbers positive for any given initial configuration of the $n$ numbers?
2017 BMO TST
Given a random positive integer $N$. Prove that there exist infinitely many positive integers $M$ whose none of its digits is $0$ and such that the sum of the digits of $N \cdot M$ is same as sum of digits $M$.
Find all functions $f : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that : $f(x)f(y)f(z)=9f(z+xyf(z))$, where $x$, $y$, $z$, are three positive real numbers.
The incircle of $ \triangle A_{0}B_{0}C_{0}$, meets legs $B_{0}C_{0}$, $C_{0}A_{0}$, $A_{0}B_{0}$, respectively on points $A$, $B$, $C$, and the incircle of $ \triangle ABC$, with center $I$, meets legs $BC$, $CA$, $AB$, on points $A_{1}$, $B_{1}$, $C_{1}$, respectively. We write with $ \sigma (ABC)$, and $ \sigma (A_{1}B_{1}C_{1})$ the areas of $ \triangle ABC$, and $ \triangle A_{1}B_{1}C_{1}$ respectively. Prove that if $ \sigma (ABC)=2 \sigma (A_{1}B_{1}C_{1})$, then lines $AA_{0}$, $BB_{0}$, $CC_{0}$ are concurrent.
Given a set $A$ which contains $n$ elements. For any two distinct subsets $A_{1}$, $A_{2}$ of the given set $A$, we fix the number of elements of $A_1 \cap A_2$. Find the sum of all the numbers obtained in the described way.