2017 South East Mathematical Olympiad

Grade 10

July 30th - Day 1

1

Let xi{0,1}(i=1,2,,n). If the function f=f(x1,x2,,xn) only equals 0 or 1, then define f as an "n-variable Boolean function" and denote Dn(f)={(x1,x2,,xn)|f(x1,x2,,xn)=0}. (1) Determine the number of n-variable Boolean functions; (2) Let g be a 10-variable Boolean function satisfying g(x_1, x_2, \cdots, x_{10}) \equiv 1 + x_1 + x_1 x_2 + x_1 x_2 x_3 + \cdots + x_1 x_2\cdots x_{10} \pmod{2}Evaluate the size of the set D_{10} (g) and \sum\limits_{(x_1, x_2, \cdots, x_{10}) \in D_{10} (g)} (x_1 + x_2 + x_3 + \cdots + x_{10}).

2

Let ABC be an acute-angled triangle. In ABC, AB \neq AB, K is the midpoint of the the median AD, DE \perp AB at E, DF \perp AC at F. The lines KE, KF intersect the line BC at M, N, respectively. The circumcenters of \triangle DEM, \triangle DFN are O_1, O_2, respectively. Prove that O_1 O_2 \parallel BC.

3

For any positive integer n, let D_n denote the set of all positive divisors of n, and let f_i(n) denote the size of the set F_i(n) = \{a \in D_n | a \equiv i \pmod{4} \}where i = 1, 2. Determine the smallest positive integer m such that 2f_1(m) - f_2(m) = 2017.

4

Let a_1,a_2,\dots,a_{2017} be reals satisfied a_1=a_{2017}, |a_i+a_{i+2}-2a_{i+1}|\le 1 for all i=1,2,\dots,2015. Find the maximum value of \max_{1\le i<j\le 2017}|a_i-a_j|.

July 31st - Day 2

5

Let ABCD be a cyclic quadrilateral inscribed in circle O, where AC\perp BD. M,N are the midpoint of arc ADC,ABC. DO and AN intersect each other at G, the line passes through G and parellel to NC intersect CD at K. Prove that AK\perp BM.

6

The sequence \{a_n\} satisfies a_1 = \frac{1}{2}, a_2 = \frac{3}{8}, and a_{n + 1}^2 + 3 a_n a_{n + 2} = 2 a_{n + 1} (a_n + a_{n + 2}) (n \in \mathbb{N^*}). (1) Determine the general formula of the sequence \{a_n\}; (2) Prove that for any positive integer n, there is 0 < a_n < \frac{1}{\sqrt{2n + 1}}.

7

Let m be a given positive integer. Define a_k=\frac{(2km)!}{3^{(k-1)m}},k=1,2,\cdots. Prove that there are infinite many integers and infinite many non-integers in the sequence \{a_k\}.

8

Given the positive integer m \geq 2, n \geq 3. Define the following set S = \left\{(a, b) | a \in \{1, 2, \cdots, m\}, b \in \{1, 2, \cdots, n\} \right\}.Let A be a subset of S. If there does not exist positive integers x_1, x_2, y_1, y_2, y_3 such that x_1 < x_2, y_1 < y_2 < y_3 and (x_1, y_1), (x_1, y_2), (x_1, y_3), (x_2, y_2) \in A.Determine the largest possible number of elements in A.

Grade 11

July 30th - Day 1

The same as Grade 10 Problem 2 - 1

2

Let x_i \in \{0,1\}(i=1,2,\cdots ,n),if the value of function f=f(x_1,x_2, \cdots ,x_n) can only be 0 or 1,then we call f a n-var Boole function,and we denote D_n(f)=\{(x_1,x_2, \cdots ,x_n)|f(x_1,x_2, \cdots ,x_n)=0\}. (1) Find the number of n-var Boole function; (2) Let g be a n-var Boole function such that g(x_1,x_2, \cdots ,x_n) \equiv 1+x_1+x_1x_2+x_1x_2x_3 +\cdots +x_1x_2 \cdots x_n \pmod 2, Find the number of elements of the set D_n(g),and find the maximum of n \in \mathbb{N}_+ such that \sum_{(x_1,x_2, \cdots ,x_n) \in D_n(g)}(x_1+x_2+ \cdots +x_n) \le 2017.

3

Let a_1,a_2,\cdots,a_{n+1}>0. Prove that\sum_{i-1}^{n}a_i\sum_{i=1}^{n}a_{i+1}\geq \sum_{i=1}^{n}\frac{a_i a_{i+1}}{a_i+a_{i+1}}\cdot \sum_{i=1}^{n}(a_i+a_{i+1})

4

For any positive integer n, let D_n denote the set of all positive divisors of n, and let f_i(n) denote the size of the set F_i(n) = \{a \in D_n | a \equiv i \pmod{4} \}where i = 0, 1, 2, 3. Determine the smallest positive integer m such that f_0(m) + f_1(m) - f_2(m) - f_3(m) = 2017.

July 31st - Day 2

5

Let a, b, c be real numbers, a \neq 0. If the equation 2ax^2 + bx + c = 0 has real root on the interval [-1, 1]. Prove that \min \{c, a + c + 1\} \leq \max \{|b - a + 1|, |b + a - 1|\},and determine the necessary and sufficient conditions of a, b, c for the equality case to be achieved.

6

Let ABCD be a cyclic quadrilateral inscribed in circle O, where AC\perp BD. M be the midpoint of arc ADC. Circle (DOM) intersect DA,DC at E,F. Prove that BE=BF.

7

Find the maximum value of n, such that there exist n pairwise distinct positive numbers x_1,x_2,\cdots,x_n, satisfy x_1^2+x_2^2+\cdots+x_n^2=2017

8

Given the positive integer m \geq 2, n \geq 3. Define the following set S = \left\{(a, b) | a \in \{1, 2, \cdots, m\}, b \in \{1, 2, \cdots, n\} \right\}.Let A be a subset of S. If there does not exist positive integers x_1, x_2, x_3, y_1, y_2, y_3 such that x_1 < x_2 < x_3, y_1 < y_2 < y_3 and (x_1, y_2), (x_2, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_2) \in A.Determine the largest possible number of elements in A.