2017 China Northern MO

10 - Grade

1

A sequence \(\{a_n\}\) is defined as follows: \(a_1 = 1\), \(a_2 = \frac{1}{3}\), and for all \(n \geq 1,\) \(\frac{(1+a_n)(1+a_{n+2})}{(1+a_n+1)^2} = \frac{a_na_{n+2}}{a_{n+1}^2}\). Prove that, for all \(n \geq 1\), \(a_1 + a_2 + ... + a_n < \frac{34}{21}\).

2

Prove that there exist infinitely many integers \(n\) which satisfy \(2017^2 | 1^n + 2^n + ... + 2017^n\).

3

Let \(D\) be the midpoint of side \(BC\) of triangle \(ABC\). Let \(E, F\) be points on sides \(AB, AC\) respectively such that \(DE = DF\). Prove that \(AE + AF = BE + CF \iff \angle EDF = \angle BAC\).

4

Let \(Q\) be a set of permutations of \(1,2,...,100\) such that for all \(1\leq a,b \leq 100\), \(a\) can be found to the left of \(b\) and adjacent to \(b\) in at most one permutation in \(Q\). Find the largest possible number of elements in \(Q\).

5

Triangle \(ABC\) has \(AB > AC\) and \(\angle A = 60^\circ \). Let \(M\) be the midpoint of \(BC\), \(N\) be the point on segment \(AB\) such that \(\angle BNM = 30^\circ\). Let \(D,E\) be points on \(AB, AC\) respectively. Let \(F, G, H\) be the midpoints of \(BE, CD, DE\) respectively. Let \(O\) be the circumcenter of triangle \(FGH\). Prove that \(O\) lies on line \(MN\).

6

Find all integers \(n\) such that there exists a concave pentagon which can be dissected into \(n\) congruent triangles.

7

Let \(S(n)\) denote the sum of the digits of the base-10 representation of an natural number \(n\). For example. \(S(2017) = 2+0+1+7 = 10\). Prove that for all primes \(p\), there exists infinitely many \(n\) which satisfy \(S(n) \equiv n \mod p\).

8

Let \(n>1\) be an integer, and let \(x_1, x_2, ..., x_n\) be real numbers satisfying \(x_1, x_2, ..., x_n \in [0,n]\) with \(x_1x_2...x_n = (n-x_1)(n-x_2)...(n-x_n)\). Find the maximum value of \(y = x_1 + x_2 + ... + x_n\).

11 - Grade

1

Define sequence $(a_n):a_1=\text{e},a_2=\text{e}^3,\text{e}^{1-k}a_n^{k+2}=a_{n+1}a_{n-1}^{2k}$ for all $n\geq2$, where $k$ is a positive real number. Find $\prod_{i=1}^{2017}a_i$.

Grade 10 P3 - 2

Grade 10 P4 - 3

4

Positive intenger $n\geq3$. $a_1,a_2,\cdots,a_n$ are $n$ positive intengers that are pairwise coprime, satisfying that there exists $k_1,k_2,\cdots,k_n\in\{-1,1\}, \sum_{i=1}^{n}k_ia_i=0$. Are there positive intengers $b_1,b_2,\cdots,b_n$, for any $k\in\mathbb{Z}_+$, $b_1+ka_1,b_2+ka_2,\cdots,b_n+ka_n$ are pairwise coprime?

5

Length of sides of regular hexagon $ABCDEF$ is $a$. Two moving points $M,N$ moves on sides $BC,DE$, satisfy that $\angle MAN=\frac{\pi}{3}$. Prove that $AM\cdot AN-BM\cdot DN$ is a definite value.

6

Define $S_r(n)$: digit sum of $n$ in base $r$. For example, $38=(1102)_3,S_3(38)=1+1+0+2=4$. Prove: (a) For any $r>2$, there exists prime $p$, for any positive intenger $n$, $S_{r}(n)\equiv n\mod p$. (b) For any $r>1$ and prime $p$, there exists infinitely many $n$, $S_{r}(n)\equiv n\mod p$.

Grade 10 P8 - 7

8

On Qingqing Grassland, there are 7 sheep numberd $1,2,3,4,5,6,7$ and 2017 wolves numberd $1,2,\cdots,2017$. We have such strange rules: (1) Define $P(n)$: the number of prime numbers that are smaller than $n$. Only when $P(i)\equiv j\pmod7$, wolf $i$ may eat sheep $j$ (he can also choose not to eat the sheep). (2) If wolf $i$ eat sheep $j$, he will immediately turn into sheep $j$. (3) If a wolf can make sure not to be eaten, he really wants to experience life as a sheep. Assume that all wolves are very smart, then how many wolves will remain in the end?