We consider the real sequence $(x_n)$ defined by $x_0=0, x_1=1$ and $x_{n+2}=3x_{n+1}-2x_n$ for $n=0,1,...$ We define the sequence $(y_n)$ by $y_n=x_n^2+2^{n+2}$ for every non negative integer $n$. Prove that for every $n>0$, $y_n$ is the square of an odd integer
2017 Pan African
Day 1
Let $x,y$, and $z$ be positive real numbers such that $xy+yz+zx=3xyz$. Prove that $$x^2y+y^2z+z^2x \geq 2(x+y+z)-3.$$In which cases do we have equality?
Let $n$ be a positive integer. - Find, in terms of $n$, the number of pairs $(x,y)$ of positive integers that are solutions of the equation : $$x^2-y^2=10^2.30^{2n}$$- Prove further that this number is never a square
Day 2
Find all the real numbers $x$ such that $\frac{1}{[x]}+\frac{1}{[2x]}=\{x\}+\frac{1}{3}$ where $[x]$ denotes the integer part of $x$ and $\{x\}=x-[x]$. For example, $[2.5]=2, \{2.5\} = 0.5$ and $[-1.7]= -2, \{-1.7\} = 0.3$
The numbers from $1$ to $2017$ are written on a board. Deka and Farid play the following game : each of them, on his turn, erases one of the numbers. Anyone who erases a multiple of $2, 3$ or $5$ loses and the game is over. Is there a winning strategy for Deka ?
Let $ABC$ be a triangle with $H$ its orthocenter. The circle with diameter $[AC]$ cuts the circumcircle of triangle $ABH$ at $K$. Prove that the point of intersection of the lines $CK$ and $BH$ is the midpoint of the segment $[BH]$