2017 ELMO Problems

June 10th - Day 1

1

Let $a_1,a_2,\dots, a_n$ be positive integers with product $P,$ where $n$ is an odd positive integer. Prove that $$\gcd(a_1^n+P,a_2^n+P,\dots, a_n^n+P)\le 2\gcd(a_1,\dots, a_n)^n.$$ Proposed by Daniel Liu

2

Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$ Proposed by Michael Ren

3

nic$\kappa$y is drawing kappas in the cells of a square grid. However, he does not want to draw kappas in three consecutive cells (horizontally, vertically, or diagonally). Find all real numbers $d>0$ such that for every positive integer $n,$ nic$\kappa$y can label at least $dn^2$ cells of an $n\times n$ square. Proposed by Mihir Singhal and Michael Kural

June 17th - Day 2

4

An integer $n>2$ is called tasty if for every ordered pair of positive integers $(a,b)$ with $a+b=n,$ at least one of $\frac{a}{b}$ and $\frac{b}{a}$ is a terminating decimal. Do there exist infinitely many tasty integers? Proposed by Vincent Huang

5

The edges of $K_{2017}$ are each labeled with $1,2,$ or $3$ such that any triangle has sum of labels at least $5.$ Determine the minimum possible average of all $\dbinom{2017}{2}$ labels. (Here $K_{2017}$ is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.) Proposed by Michael Ma

6

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all real numbers $a,b,$ and $c$: (i) If $a+b+c\ge 0$ then $f(a^3)+f(b^3)+f(c^3)\ge 3f(abc).$ (ii) If $a+b+c\le 0$ then $f(a^3)+f(b^3)+f(c^3)\le 3f(abc).$ Proposed by Ashwin Sah