Determine all the sets of six consecutive positive integers such that the product of some two of them . added to the product of some other two of them is equal to the product of the remaining two numbers.
2017 Junior Balkan MO
Let $x,y,z$ be positive integers such that $x\neq y\neq z \neq x$ .Prove that $$(x+y+z)(xy+yz+zx-2)\geq 9xyz.$$When does the equality hold? Proposed by Dorlir Ahmeti, Albania
Let $ABC $ be an acute triangle such that $AB\neq AC$ ,with circumcircle $ \Gamma$ and circumcenter $O$. Let $M$ be the midpoint of $BC$ and $D$ be a point on $ \Gamma$ such that $AD \perp BC$. let $T$ be a point such that $BDCT$ is a parallelogram and $Q$ a point on the same side of $BC$ as $A$ such that $\angle{BQM}=\angle{BCA}$ and $\angle{CQM}=\angle{CBA}$. Let the line $AO$ intersect $ \Gamma$ at $E$ $(E\neq A)$ and let the circumcircle of $\triangle ETQ$ intersect $ \Gamma$ at point $X\neq E$. Prove that the point $A,M$ and $X$ are collinear.
Consider a regular 2n-gon $ P$,$A_1,A_2,\cdots ,A_{2n}$ in the plane ,where $n$ is a positive integer . We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$ , if the line segment $SE$ contains no other points that lie on the sides of $P$ except $S$ .We color the sides of $P$ in 3 different colors (ignore the vertices of $P$,we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once . Moreover ,from every point in the plane external to $P$ , points of most 2 different colors on $P$ can be seen .Find the number of distinct such colorings of $P$ (two colorings are considered distinct if at least one of sides is colored differently). Proposed by Viktor Simjanoski, Macedonia JBMO 2017, Q4