For each positive integer $n$, let $s(n)$ be the sum of the digits of $n$. Find the smallest positive integer $k$ such that \[s(k) = s(2k) = s(3k) = \cdots = s(2013k) = s(2014k).\]
2014 IberoAmerican
September 23rd - Day 1
Find all polynomials $P(x)$ with real coefficients such that $P(2014) = 1$ and, for some integer $c$: $xP(x-c) = (x - 2014)P(x)$
$2014$ points are placed on a circumference. On each of the segments with end points on two of the $2014$ points is written a non-negative real number. For any convex polygon with vertices on some of the $2014$ points, the sum of the numbers written on their sides is less or equal than $1$. Find the maximum possible value for the sum of all the written numbers.
September 24th - Day 2
$N$ coins are placed on a table, $N - 1$ are genuine and have the same weight, and one is fake, with a different weight. Using a two pan balance, the goal is to determine with certainty the fake coin, and whether it is lighter or heavier than a genuine coin. Whenever one can deduce that one or more coins are genuine, they will be inmediately discarded and may no longer be used in subsequent weighings. Determine all $N$ for which the goal is achievable. (There are no limits regarding how many times one may use the balance). Note: the only difference between genuine and fake coins is their weight; otherwise, they are identical.
Let $ABC$ be an acute triangle and $H$ its orthocenter. Let $D$ be the intersection of the altitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of $BH$ and $CH$, respectively. Let the lines $DM$ and $DN$ intersect $AB$ and $AC$ at points $X$ and $Y$ respectively. If $P$ is the intersection of $XY$ with $BH$ and $Q$ the intersection of $XY$ with $CH$, show that $H, P, D, Q$ lie on a circumference.
Given a set $X$ and a function $f: X \rightarrow X$, for each $x \in X$ we define $f^1(x)=f(x)$ and, for each $j \ge 1$, $f^{j+1}(x)=f(f^j(x))$. We say that $a \in X$ is a fixed point of $f$ if $f(a)=a$. For each $x \in \mathbb{R}$, let $\pi (x)$ be the quantity of positive primes lesser or equal to $x$. Given an positive integer $n$, we say that $f: \{1,2, \dots, n\} \rightarrow \{1,2, \dots, n\}$ is catracha if $f^{f(k)}(k)=k$, for every $k=1, 2, \dots n$. Prove that: (a) If $f$ is catracha, $f$ has at least $\pi (n) -\pi (\sqrt{n}) +1$ fixed points. (b) If $n \ge 36$, there exists a catracha function $f$ with exactly $ \pi (n) -\pi (\sqrt{n}) + 1$ fixed points.