We say that a natural number $n$ is charrua if it satisfy simultaneously the following conditions: - Every digit of $n$ is greater than 1. - Every time that four digits of $n$ are multiplied, it is obtained a divisor of $n$ Show that every natural number $k$ there exists a charrua number with more than $k$ digits.
2001 IberoAmerican
Day 1
The incircle of the triangle $\triangle{ABC}$ has center at $O$ and it is tangent to the sides $BC$, $AC$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. The lines $BO$ and $CO$ intersect the line $YZ$ at the points $P$ and $Q$, respectively. Show that if the segments $XP$ and $XQ$ has the same length, then the triangle $\triangle ABC$ is isosceles.
Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements. Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$
Day 2
Find the maximum number of increasing arithmetic progressions that can have a finite sequence of real numbers $a_1<a_2<\cdots<a_n$ of $n\ge 3$ real numbers.
In a board of $2000\times2001$ squares with integer coordinates $(x,y)$, $0\leq{x}\leq1999$ and $0\leq{y}\leq2000$. A ship in the table moves in the following way: before a move, the ship is in position $(x,y)$ and has a velocity of $(h,v)$ where $x,y,h,v$ are integers. The ship chooses new velocity $(h^\prime,v^\prime)$ such that $h^\prime-h,v^\prime-v\in\{-1,0,1\}$. The new position of the ship will be $(x^\prime,y^\prime)$ where $x^\prime$ is the remainder of the division of $x+h^\prime$ by $2000$ and $y^\prime$ is the remainder of the division of $y+v^\prime$ by $2001$. There are two ships on the board: The Martian ship and the Human trying to capture it. Initially each ship is in a different square and has velocity $(0,0)$. The Human is the first to move; thereafter they continue moving alternatively. Is there a strategy for the Human to capture the Martian, independent of the initial positions and the Martian’s moves? Note: The Human catches the Martian ship by reaching the same position as the Martian ship after the same move.
Show that it is impossible to cover a unit square with five equal squares with side $s<\frac{1}{2}$.