Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.
1999 IberoAmerican
Day 1
Given two circle $M$ and $N$, we say that $M$ bisects $N$ if they intersect in two points and the common chord is a diameter of $N$. Consider two fixed non-concentric circles $C_1$ and $C_2$. a) Show that there exists infinitely many circles $B$ such that $B$ bisects both $C_1$ and $C_2$. b) Find the locus of the centres of such circles $B$.
Let $P_1,P_2,\dots,P_n$ be $n$ distinct points over a line in the plane ($n\geq2$). Consider all the circumferences with diameters $P_iP_j$ ($1\leq{i,j}\leq{n}$) and they are painted with $k$ given colors. Lets call this configuration a ($n,k$)-cloud. For each positive integer $k$, find all the positive integers $n$ such that every possible ($n,k$)-cloud has two mutually exterior tangent circumferences of the same color.
Day 2
Let $B$ be an integer greater than 10 such that everyone of its digits belongs to the set $\{1,3,7,9\}$. Show that $B$ has a prime divisor greater than or equal to 11.
An acute triangle $\triangle{ABC}$ is inscribed in a circle with centre $O$. The altitudes of the triangle are $AD,BE$ and $CF$. The line $EF$ cut the circumference on $P$ and $Q$. a) Show that $OA$ is perpendicular to $PQ$. b) If $M$ is the midpoint of $BC$, show that $AP^2=2AD\cdot{OM}$.
Let $A$ and $B$ points in the plane and $C$ a point in the perpendiclar bisector of $AB$. It is constructed a sequence of points $C_1,C_2,\dots, C_n,\dots$ in the following way: $C_1=C$ and for $n\geq1$, if $C_n$ does not belongs to $AB$, then $C_{n+1}$ is the circumcentre of the triangle $\triangle{ABC_n}$. Find all the points $C$ such that the sequence $C_1,C_2,\dots$ is defined for all $n$ and turns eventually periodic. Note: A sequence $C_1,C_2, \dots$ is called eventually periodic if there exist positive integers $k$ and $p$ such that $C_{n+p}=c_n$ for all $n\geq{k}$.