1995 IberoAmerican

Day 1

1

Find all the possible values of the sum of the digits of all the perfect squares. [Commented by djimenez] Comment: I would rewrite it as follows: Let $f: \mathbb{N}\rightarrow \mathbb{N}$ such that $f(n)$ is the sum of all the digits of the number $n^2$. Find the image of $f$ (where, by image it is understood the set of all $x$ such that exists an $n$ with $f(n)=x$).

2

Let $n$ be a positive integer greater than 1. Determine all the collections of real numbers $x_1,\ x_2,\dots,\ x_n\geq1\mbox{ and }x_{n+1}\leq0$ such that the next two conditions hold: (i) $x_1^{\frac12}+x_2^{\frac32}+\cdots+x_n^{n-\frac12}= nx_{n+1}^\frac12$ (ii) $\frac{x_1+x_2+\cdots+x_n}{n}=x_{n+1}$

3

Let $ r$ and $ s$ two orthogonal lines that does not lay on the same plane. Let $ AB$ be their common perpendicular, where $ A\in{}r$ and $ B\in{}s$(*).Consider the sphere of diameter $ AB$. The points $ M\in{r}$ and $ N\in{s}$ varies with the condition that $ MN$ is tangent to the sphere on the point $ T$. Find the locus of $ T$. Note: The plane that contains $ B$ and $ r$ is perpendicular to $ s$.

Day 2

1

In a $m\times{n}$ grid are there are token. Every token dominates every square on its same row ($\leftrightarrow$), its same column ($\updownarrow$), and diagonal ($\searrow\hspace{-4.45mm}\nwarrow$)(Note that the token does not \emph{dominate} the diagonal ($\nearrow\hspace{-4.45mm}\swarrow$), determine the lowest number of tokens that must be on the board to dominate all the squares on the board.

2

The incircle of a triangle $ABC$ touches the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. Let the line $AD$ intersect this incircle of triangle $ABC$ at a point $X$ (apart from $D$). Assume that this point $X$ is the midpoint of the segment $AD$, this means, $AX = XD$. Let the line $BX$ meet the incircle of triangle $ABC$ at a point $Y$ (apart from $X$), and let the line $CX$ meet the incircle of triangle $ABC$ at a point $Z$ (apart from $X$). Show that $EY = FZ$.

3

A function $f: N \rightarrow N$ is circular if for every $p \in N$ there exists $n\in N,\ n \le p$ such that $f^n(p)=p$ ($f$ composed with itself $n$ times) The function $f$ has repulsion degree $k>0$ if for every $p\in N$ $f^i(p)\neq{p}$ for every $i=1,2,\dots,\lfloor{kp}\rfloor$. Determine the maximum repulsion degree can have a circular function. Note: Here $\lfloor{x}\rfloor$ is the integer part of $x$.