We call a $5$-tuple of integers arrangeable if its elements can be labeled $a, b, c, d, e$ in some order so that $a-b+c-d+e=29$. Determine all $2017$-tuples of integers $n_1, n_2, . . . , n_{2017}$ such that if we place them in a circle in clockwise order, then any $5$-tuple of numbers in consecutive positions on the circle is arrangeable. Warut Suksompong, Thailand
2017 APMO
Let $ABC$ be a triangle with $AB < AC$. Let $D$ be the intersection point of the internal bisector of angle $BAC$ and the circumcircle of $ABC$. Let $Z$ be the intersection point of the perpendicular bisector of $AC$ with the external bisector of angle $\angle{BAC}$. Prove that the midpoint of the segment $AB$ lies on the circumcircle of triangle $ADZ$. Olimpiada de Matemáticas, Nicaragua
Let $A(n)$ denote the number of sequences $a_1\ge a_2\ge\cdots{}\ge a_k$ of positive integers for which $a_1+\cdots{}+a_k = n$ and each $a_i +1$ is a power of two $(i = 1,2,\cdots{},k)$. Let $B(n)$ denote the number of sequences $b_1\ge b_2\ge \cdots{}\ge b_m$ of positive integers for which $b_1+\cdots{}+b_m =n$ and each inequality $b_j\ge 2b_{j+1}$ holds $(j=1,2,\cdots{}, m-1)$. Prove that $A(n) = B(n)$ for every positive integer $n$. Senior Problems Committee of the Australian Mathematical Olympiad Committee
Call a rational number $r$ powerful if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all powerful. Jeck Lim, Singapore
Let $n$ be a positive integer. A pair of $n$-tuples $(a_1,\cdots{}, a_n)$ and $(b_1,\cdots{}, b_n)$ with integer entries is called an exquisite pair if $$|a_1b_1+\cdots{}+a_nb_n|\le 1.$$Determine the maximum number of distinct $n$-tuples with integer entries such that any two of them form an exquisite pair. Pakawut Jiradilok and Warut Suksompong, Thailand