1995 USAMO

April 27th

1

Let $\, p \,$ be an odd prime. The sequence $(a_n)_{n \geq 0}$ is defined as follows: $\, a_0 = 0,$ $a_1 = 1, \, \ldots, \, a_{p-2} = p-2 \,$ and, for all $\, n \geq p-1, \,$ $\, a_n \,$ is the least positive integer that does not form an arithmetic sequence of length $\, p \,$ with any of the preceding terms. Prove that, for all $\, n, \,$ $\, a_n \,$ is the number obtained by writing $\, n \,$ in base $\, p-1 \,$ and reading the result in base $\, p$.

2

A calculator is broken so that the only keys that still work are the $ \sin$, $ \cos$, and $ \tan$ buttons, and their inverses (the $ \arcsin$, $ \arccos$, and $ \arctan$ buttons). The display initially shows $ 0$. Given any positive rational number $ q$, show that pressing some finite sequence of buttons will yield the number $ q$ on the display. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.

3

Given a nonisosceles, nonright triangle ABC, let O denote the center of its circumscribed circle, and let $A_1$, $B_1$, and $C_1$ be the midpoints of sides BC, CA, and AB, respectively. Point $A_2$ is located on the ray $OA_1$ so that $OAA_1$ is similar to $OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1$, respectively, are defined similarly. Prove that lines $AA_2$, $BB_2$, and $CC_2$ are concurrent, i.e. these three lines intersect at a point.

4

Suppose $\, q_{0}, \, q_{1}, \, q_{2}, \ldots \; \,$ is an infinite sequence of integers satisfying the following two conditions: (i) $\, m-n \,$ divides $\, q_{m}-q_{n}\,$ for $\, m > n \geq 0,$ (ii) there is a polynomial $\, P \,$ such that $\, |q_{n}| < P(n) \,$ for all $\, n$ Prove that there is a polynomial $\, Q \,$ such that $\, q_{n}= Q(n) \,$ for all $\, n$.

5

Suppose that in a certain society, each pair of persons can be classified as either amicable or hostile. We shall say that each member of an amicable pair is a friend of the other, and each member of a hostile pair is a foe of the other. Suppose that the society has $\, n \,$ persons and $\, q \,$ amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $\, q(1 - 4q/n^2) \,$ or fewer amicable pairs.

None

These problems are copyright $\copyright$ Mathematical Association of America.