Find, as a function of $\, n, \,$ the sum of the digits of \[ 9 \times 99 \times 9999 \times \cdots \times \left( 10^{2^n} - 1 \right), \] where each factor has twice as many digits as the previous one.
1992 USAMO
April 30th
Prove \[ \frac{1}{\cos 0^\circ \cos 1^\circ} + \frac{1}{\cos 1^\circ \cos 2^\circ} + \cdots + \frac{1}{\cos 88^\circ \cos 89^\circ} = \frac{\cos 1^\circ}{\sin^2 1^\circ}. \]
For a nonempty set $\, S \,$ of integers, let $\, \sigma(S) \,$ be the sum of the elements of $\, S$. Suppose that $\, A = \{a_1, a_2, \ldots, a_{11} \} \,$ is a set of positive integers with $\, a_1 < a_2 < \cdots < a_{11} \,$ and that, for each positive integer $\, n\leq 1500, \,$ there is a subset $\, S \,$ of $\, A \,$ for which $\, \sigma(S) = n$. What is the smallest possible value of $\, a_{10}$?
Chords $AA^{\prime}$, $BB^{\prime}$, $CC^{\prime}$ of a sphere meet at an interior point $P$ but are not contained in a plane. The sphere through $A$, $B$, $C$, $P$ is tangent to the sphere through $A^{\prime}$, $B^{\prime}$, $C^{\prime}$, $P$. Prove that $\, AA' = BB' = CC'$.
Let $\, P(z) \,$ be a polynomial with complex coefficients which is of degree $\, 1992 \,$ and has distinct zeros. Prove that there exist complex numbers $\, a_1, a_2, \ldots, a_{1992} \,$ such that $\, P(z) \,$ divides the polynomial \[ \left( \cdots \left( (z-a_1)^2 - a_2 \right)^2 \cdots - a_{1991} \right)^2 - a_{1992}. \]
These problems are copyright $\copyright$ Mathematical Association of America.