1987 USAMO

1

Determine all solutions in non-zero integers $a$ and $b$ of the equation \[(a^2+b)(a+b^2) = (a-b)^3.\]

2

$AD$, $BE$, and $CF$ are the bisectors of the interior angles of triangle $ABC$, with $D$, $E$, and $F$ lying on the perimeter. If angle $EDF$ is $90$ degrees, determine all possible values of angle $BAC$.

3

Construct a set $S$ of polynomials inductively by the rules: (i) $x\in S$; (ii) if $f(x)\in S$, then $xf(x)\in S$ and $x+(1-x)f(x)\in S$. Prove that there are no two distinct polynomials in $S$ whose graphs intersect within the region $\{0 < x < 1\}$.

4

Three circles $C_i$ are given in the plane: $C_1$ has diameter $AB$ of length $1$; $C_2$ is concentric and has diameter $k$ ($1 < k < 3$); $C_3$ has center $A$ and diameter $2k$. We regard $k$ as fixed. Now consider all straight line segments $XY$ which have one endpoint $X$ on $C_2$, one endpoint $Y$ on $C_3$, and contain the point $B$. For what ratio $XB/BY$ will the segment $XY$ have minimal length?

5

Given a sequence $(x_1,x_2,\ldots, x_n)$ of 0's and 1's, let $A$ be the number of triples $(x_i,x_j,x_k)$ with $i<j<k$ such that $(x_i,x_j,x_k)$ equals $(0,1,0)$ or $(1,0,1)$. For $1\leq i \leq n$, let $d_i$ denote the number of $j$ for which either $j < i$ and $x_j = x_i$ or else $j > i$ and $x_j\neq x_i$. (a) Prove that \[A = \binom n3 - \sum_{i=1}^n\binom{d_i}2.\](Of course, $\textstyle\binom ab = \tfrac{a!}{b!(a-b)!}$.) [5 points] (b) Given an odd number $n$, what is the maximum possible value of $A$? [15 points]

None

These problems are copyright $\copyright$ Mathematical Association of America.