A two-pan balance is innacurate since its balance arms are of different lengths and its pans are of different weights. Three objects of different weights $A$, $B$, and $C$ are each weighed separately. When placed on the left-hand pan, they are balanced by weights $A_1$, $B_1$, and $C_1$, respectively. When $A$ and $B$ are placed on the right-hand pan, they are balanced by $A_2$ and $B_2$, respectively. Determine the true weight of $C$ in terms of $A_1, B_1, C_1, A_2$, and $B_2$.
1980 USAMO
1
2
Determine the maximum number of three-term arithmetic progressions which can be chosen from a sequence of $n$ real numbers \[a_1<a_2<\cdots<a_n.\]
3
Let $F_r=x^r\sin{rA}+y^r\sin{rB}+z^r\sin{rC}$, where $x,y,z,A,B,C$ are real and $A+B+C$ is an integral multiple of $\pi$. Prove that if $F_1=F_2=0$, then $F_r=0$ for all positive integral $r$.
4
The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.
5
Prove that for numbers $a,b,c$ in the interval $[0,1]$, \[\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \le 1.\]
None
These problems are copyright $\copyright$ Mathematical Association of America.