2010 Romania Team Selection Test

TST 1

1

Given an integer number $n \geq 3$, consider $n$ distinct points on a circle, labelled $1$ through $n$. Determine the maximum number of closed chords $[ij]$, $i \neq j$, having pairwise non-empty intersections. János Pach

2

Let $n$ be a positive integer number and let $a_1, a_2, \ldots, a_n$ be $n$ positive real numbers. Prove that $f : [0, \infty) \rightarrow \mathbb{R}$, defined by \[f(x) = \dfrac{a_1 + x}{a_2 + x} + \dfrac{a_2 + x}{a_3 + x} + \cdots + \dfrac{a_{n-1} + x}{a_n + x} + \dfrac{a_n + x}{a_1 + x}, \] is a decreasing function. Dan Marinescu et al.

3

Two rectangles of unit area overlap to form a convex octagon. Show that the area of the octagon is at least $\dfrac {1} {2}$. Kvant Magazine

4

Two circles in the plane, $\gamma_1$ and $\gamma_2$, meet at points $M$ and $N$. Let $A$ be a point on $\gamma_1$, and let $D$ be a point on $\gamma_2$. The lines $AM$ and $AN$ meet again $\gamma_2$ at points $B$ and $C$, respectively, and the lines $DM$ and $DN$ meet again $\gamma_1$ at points $E$ and $F$, respectively. Assume the order $M$, $N$, $F$, $A$, $E$ is circular around $\gamma_1$, and the segments $AB$ and $DE$ are congruent. Prove that the points $A$, $F$, $C$ and $D$ lie on a circle whose centre does not depend on the position of the points $A$ and $D$ on the respective circles, subject to the assumptions above. ***

5

Let $a$ and $n$ be two positive integer numbers such that the (positive) prime factors of $a$ be all greater than $n$. Prove that $n!$ divides $(a - 1)(a^2 - 1)\cdots (a^{n-1} - 1)$. AMM Magazine

TST 2

1

Given a positive integer number $n$, determine the minimum of \[\max \left\{\dfrac{x_1}{1 + x_1},\, \dfrac{x_2}{1 + x_1 + x_2},\, \cdots,\, \dfrac{x_n}{1 + x_1 + x_2 + \cdots + x_n}\right\},\] as $x_1, x_2, \ldots, x_n$ run through all non-negative real numbers which add up to $1$. Kvant Magazine

2

(a) Given a positive integer $k$, prove that there do not exist two distinct integers in the open interval $(k^2, (k + 1)^2)$ whose product is a perfect square. (b) Given an integer $n > 2$, prove that there exist $n$ distinct integers in the open interval $(k^n, (k + 1)^n)$ whose product is the $n$-th power of an integer, for all but a finite number of positive integers $k$. AMM Magazine

3

Let $\gamma_1$ and $\gamma_2$ be two circles tangent at point $T$, and let $\ell_1$ and $\ell_2$ be two lines through $T$. The lines $\ell_1$ and $\ell_2$ meet again $\gamma_1$ at points $A$ and $B$, respectively, and $\gamma_2$ at points $A_1$ and $B_1$, respectively. Let further $X$ be a point in the complement of $\gamma_1 \cup \gamma_2 \cup \ell_1 \cup \ell_2$. The circles $ATX$ and $BTX$ meet again $\gamma_2$ at points $A_2$ and $B_2$, respectively. Prove that the lines $TX$, $A_1B_2$ and $A_2B_1$ are concurrent. ***

4

Let $n$ be an integer number greater than or equal to $2$, and let $K$ be a closed convex set of area greater than or equal to $n$, contained in the open square $(0, n) \times (0, n)$. Prove that $K$ contains some point of the integral lattice $\mathbb{Z} \times \mathbb{Z}$. Marius Cavachi

TST 3

1

Let $n$ be a positive integer and let $x_1, x_2, \ldots, x_n$ be positive real numbers such that $x_1x_2 \cdots x_n = 1$. Prove that \[\displaystyle\sum_{i=1}^n x_i^n (1 + x_i) \geq \dfrac{n}{2^{n-1}} \prod_{i=1}^n (1 + x_i).\] IMO Shortlist

2

Let $ABC$ be a triangle such that $AB \neq AC$. The internal bisector lines of the angles $ABC$ and $ACB$ meet the opposite sides of the triangle at points $B_0$ and $C_0$, respectively, and the circumcircle $ABC$ at points $B_1$ and $C_1$, respectively. Further, let $I$ be the incentre of the triangle $ABC$. Prove that the lines $B_0C_0$ and $B_1C_1$ meet at some point lying on the parallel through $I$ to the line $BC$. Radu Gologan

3

Given a positive integer $a$, prove that $\sigma(am) < \sigma(am + 1)$ for infinitely many positive integers $m$. (Here $\sigma(n)$ is the sum of all positive divisors of the positive integer number $n$.) Vlad Matei

4

Let $X$ and $Y$ be two finite subsets of the half-open interval $[0, 1)$ such that $0 \in X \cap Y$ and $x + y = 1$ for no $x \in X$ and no $y \in Y$. Prove that the set $\{x + y - \lfloor x + y \rfloor : x \in X \textrm{ and } y \in Y\}$ has at least $|X| + |Y| - 1$ elements. ***

TST 4 (All Geometry)

1

Let $P$ be a point in the plane and let $\gamma$ be a circle which does not contain $P$. Two distinct variable lines $\ell$ and $\ell'$ through $P$ meet the circle $\gamma$ at points $X$ and $Y$, and $X'$ and $Y'$, respectively. Let $M$ and $N$ be the antipodes of $P$ in the circles $PXX'$ and $PYY'$, respectively. Prove that the line $MN$ passes through a fixed point. Mihai Chis

2

Let $ABC$ be a scalene triangle. The tangents at the perpendicular foot dropped from $A$ on the line $BC$ and the midpoint of the side $BC$ to the nine-point circle meet at the point $A'$\,; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA'$, $BB'$ and $CC'$ are concurrent. Gazeta Matematica

3

Let $\mathcal{L}$ be a finite collection of lines in the plane in general position (no two lines in $\mathcal{L}$ are parallel and no three are concurrent). Consider the open circular discs inscribed in the triangles enclosed by each triple of lines in $\mathcal{L}$. Determine the number of such discs intersected by no line in $\mathcal{L}$, in terms of $|\mathcal{L}|$. B. Aronov et al.

TST 5

1

Each point of the plane is coloured in one of two colours. Given an odd integer number $n \geq 3$, prove that there exist (at least) two similar triangles whose similitude ratio is $n$, each of which has a monochromatic vertex-set. Vasile Pop

2

Let $\ell$ be a line, and let $\gamma$ and $\gamma'$ be two circles. The line $\ell$ meets $\gamma$ at points $A$ and $B$, and $\gamma'$ at points $A'$ and $B'$. The tangents to $\gamma$ at $A$ and $B$ meet at point $C$, and the tangents to $\gamma'$ at $A'$ and $B'$ meet at point $C'$. The lines $\ell$ and $CC'$ meet at point $P$. Let $\lambda$ be a variable line through $P$ and let $X$ be one of the points where $\lambda$ meets $\gamma$, and $X'$ be one of the points where $\lambda$ meets $\gamma'$. Prove that the point of intersection of the lines $CX$ and $C'X'$ lies on a fixed circle. Gazeta Matematica

3

Let $p$ be a prime number,let $n_1, n_2, \ldots, n_p$ be positive integer numbers, and let $d$ be the greatest common divisor of the numbers $n_1, n_2, \ldots, n_p$. Prove that the polynomial \[\dfrac{X^{n_1} + X^{n_2} + \cdots + X^{n_p} - p}{X^d - 1}\] is irreducible in $\mathbb{Q}[X]$. Beniamin Bogosel

TST 6

1

A nonconstant polynomial $f$ with integral coefficients has the property that, for each prime $p$, there exist a prime $q$ and a positive integer $m$ such that $f(p) = q^m$. Prove that $f = X^n$ for some positive integer $n$. AMM Magazine

2

Let $ABC$ be a scalene triangle, let $I$ be its incentre, and let $A_1$, $B_1$ and $C_1$ be the points of contact of the excircles with the sides $BC$, $CA$ and $AB$, respectively. Prove that the circumcircles of the triangles $AIA_1$, $BIB_1$ and $CIC_1$ have a common point different from $I$. Cezar Lupu & Vlad Matei

3

Let $n$ be a positive integer number. If $S$ is a finite set of vectors in the plane, let $N(S)$ denote the number of two-element subsets $\{\mathbf{v}, \mathbf{v'}\}$ of $S$ such that \[4\,(\mathbf{v} \cdot \mathbf{v'}) + (|\mathbf{v}|^2 - 1)(|\mathbf{v'}|^2 - 1) < 0. \] Determine the maximum of $N(S)$ when $S$ runs through all $n$-element sets of vectors in the plane. ***