1997 Romania Team Selection Test

Day 1

1

We are given in the plane a line $\ell$ and three circles with centres $A,B,C$ such that they are all tangent to $\ell$ and pairwise externally tangent to each other. Prove that the triangle $ABC$ has an obtuse angle and find all possible values of this this angle. Mircea Becheanu

2

Find the number of sets $A$ containing $9$ positive integers with the following property: for any positive integer $n\le 500$, there exists a subset $B\subset A$ such that $\sum_{b\in B}{b}=n$. Bogdan Enescu & Dan Ismailescu

3

Let $n\ge 4$ be a positive integer and let $M$ be a set of $n$ points in the plane, where no three points are collinear and not all of the $n$ points being concyclic. Find all real functions $f:M\to\mathbb{R}$ such that for any circle $\mathcal{C}$ containing at least three points from $M$, the following equality holds: \[\sum_{P\in\mathcal{C}\cap M} f(P)=0\] Dorel Mihet

4

Let $ABC$ be a triangle, $D$ be a point on side $BC$, and let $\mathcal{O}$ be the circumcircle of triangle $ABC$. Show that the circles tangent to $\mathcal{O},AD,BD$ and to $\mathcal{O},AD,DC$ are tangent to each other if and only if $\angle BAD=\angle CAD$. Dan Branzei

Day 2

1

Let $VA_1A_2\ldots A_n$ be a pyramid, where $n\ge 4$. A plane $\Pi$ intersects the edges $VA_1,VA_2,\ldots, VA_n$ at the points $B_1,B_2,\ldots,B_n$ respectively such that the polygons $A_1A_2\ldots A_n$ and $B_1B_2\ldots B_n$ are similar. Prove that the plane $\Pi$ is parallel to the plane containing the base $A_1A_2\ldots A_n$. Laurentiu Panaitopol

2

Suppose that $A$ be the set of all positive integer that can write in form $a^2+2b^2$ (where $a,b\in\mathbb {Z}$ and $b$ is not equal to $0$). Show that if $p$ be a prime number and $p^2\in A$ then $p\in A$. Marcel Tena

3

Let $p$ be a prime number, $p \ge 5$, and $k$ be a digit in the $p$-adic representation of positive integers. Find the maximal length of a non constant arithmetic progression whose terms do not contain the digit $k$ in their $p$-adic representation.

4

Let $p,q,r$ be distinct prime numbers and let \[A=\{p^aq^br^c\mid 0\le a,b,c\le 5\} \] Find the least $n\in\mathbb{N}$ such that for any $B\subset A$ where $|B|=n$, has elements $x$ and $y$ such that $x$ divides $y$. Ioan Tomescu

Day 3

1

Let $ABCDEF$ be a convex hexagon, and let $P= AB \cap CD$, $Q = CD \cap EF$, $R = EF \cap AB$, $S = BC \cap DE$, $T = DE \cap FA$, $U = FA \cap BC$. Prove that $\frac{PQ}{CD} = \frac{QR}{EF} = \frac{RP}{AB}$ if and only if $\frac{ST}{DE} = \frac{TU}{FA} = \frac{US}{BC}$

2

Let $P$ be the set of points in the plane and $D$ the set of lines in the plane. Determine whether there exists a bijective function $f: P \rightarrow D$ such that for any three collinear points $A$, $B$, $C$, the lines $f(A)$, $f(B)$, $f(C)$ are either parallel or concurrent. Gefry Barad

3

Find all functions $f: \mathbb{R}\to [0;+\infty)$ such that: \[f(x^2+y^2)=f(x^2-y^2)+f(2xy)\]for all real numbers $x$ and $y$. Laurentiu Panaitopol

4

Let $n\ge 2$ be an integer and let $P(X)=X^n+a_{n-1}X^{n-1}+\ldots +a_1X+1$ be a polynomial with positive integer coefficients. Suppose that $a_k=a_{n-k}$ for all $k\in 1,2,\ldots,n-1$. Prove that there exist infinitely many pairs of positive integers $x,y$ such that $x|P(y)$ and $y|P(x)$. Remus Nicoara

Day 4

1

Let $P(X),Q(X)$ be monic irreducible polynomials with rational coefficients. suppose that $P(X)$ and $Q(X)$ have roots $\alpha$ and $\beta$ respectively, such that $\alpha + \beta $ is rational. Prove that $P(X)^2-Q(X)^2$ has a rational root. Bogdan Enescu

2

Let $a>1$ be a positive integer. Show that the set of integers \[\{a^2+a-1,a^3+a^2-1,\ldots ,a^{n+1}+a^n-1,\ldots\}\] contains an infinite subset of pairwise coprime integers. Mircea Becheanu

3

The vertices of a regular dodecagon are coloured either blue or red. Find the number of all possible colourings which do not contain monochromatic sub-polygons. Vasile Pop

4

Let $w$ be a circle and $AB$ a line not intersecting $w$. Given a point $P_{0}$ on $w$, define the sequence $P_{0},P_{1},\ldots $ as follows: $P_{n+1}$ is the second intersection with $w$ of the line passing through $B$ and the second intersection of the line $AP_{n}$ with $w$. Prove that for a positive integer $k$, if $P_{0}=P_{k}$ for some choice of $P_{0}$, then $P_{0}=P_{k}$ for any choice of $P_{0}$. Gheorge Eckstein