2017 Spain Mathematical Olympiad

1

Find the amount of different values given by the following expression: $\frac{n^2-2}{n^2-n+2}$ where $ n \in \{1,2,3,..,100\}$

2

A midpoint plotter is an instrument which draws the exact mid point of two point previously drawn. Starting off two points $1$ unit of distance apart and using only the midpoint plotter, you have to get two point which are strictly at a distance between $\frac{1}{2017}$ and $\frac{1}{2016}$ units, drawing the minimum amount of points. ¿Which is the minimum number of times you will need to use the midpoint plotter and what strategy should you follow to achieve it?

3

Let $p$ be an odd prime and $S_{q} = \frac{1}{2*3*4} + \frac{1}{5*6*7} + ... + \frac{1}{q(q+1)(q+2)}$, where $q = \frac{3p-5}{2}$. We write $\frac{1}{2}-2S_{q}$ in the form $\frac{m}{n}$, where $m$ and $n$ are integers. Prove that $m \equiv n (mod p)$

4

You are given a row made by $2018$ squares, numbered consecutively from $0$ to $2017$. Initially, there is a coin in the square $0$. Two players $A$ and $B$ play alternatively, starting with $A$, on the following way: In his turn, each player can either make his coin advance $53$ squares or make the coin go back $2$ squares. On each move the coin can never go to a number less than $0$ or greater than $2017$. The player who puts the coin on the square $2017$ wins. ¿Who is the one with the wining strategy and how should he play to win?

5

Let $a,b,c$ be positive real numbers so that $a+b+c = \frac{1}{\sqrt{3}}$. Find the maximum value of $$27abc+a\sqrt{a^2+2bc}+b\sqrt{b^2+2ca}+c\sqrt{c^2+2ab}.$$

6

In the triangle $ABC$, the respective mid points of the sides $BC$, $AB$ and $AC$ are $D$, $E$ and $F$. Let $M$ be the point where the internal bisector of the angle $\angle ADB$ intersects the side $AB$, and $N$ the point where the internal bisector of the angle $\angle ADC$ intersects the side $AC$. Also, let $O$ be the intersection point of $AD$ and $MN$, $P$ the intersection point of $AB$ and $FO$, and $R$ the intersection point of $AC$ and $EO$. Prove that $PR=AD$.