In acute triangle $ABC$, let $D,E,F$ denote the feet of the altitudes from $A,B,C$, respectively, and let $\omega$ be the circumcircle of $\triangle AEF$. Let $\omega_1$ and $\omega_2$ be the circles through $D$ tangent to $\omega$ at $E$ and $F$, respectively. Show that $\omega_1$ and $\omega_2$ meet at a point $P$ on $BC$ other than $D$. Ray Li.
2012 ELMO Problems
June 16th - Day 1
Find all ordered pairs of positive integers $(m,n)$ for which there exists a set $C=\{c_1,\ldots,c_k\}$ ($k\ge1$) of colors and an assignment of colors to each of the $mn$ unit squares of a $m\times n$ grid such that for every color $c_i\in C$ and unit square $S$ of color $c_i$, exactly two direct (non-diagonal) neighbors of $S$ have color $c_i$. David Yang.
Let $f,g$ be polynomials with complex coefficients such that $\gcd(\deg f,\deg g)=1$. Suppose that there exist polynomials $P(x,y)$ and $Q(x,y)$ with complex coefficients such that $f(x)+g(y)=P(x,y)Q(x,y)$. Show that one of $P$ and $Q$ must be constant. Victor Wang.
June 17th - Day 2
Let $a_0,b_0$ be positive integers, and define $a_{i+1}=a_i+\lfloor\sqrt{b_i}\rfloor$ and $b_{i+1}=b_i+\lfloor\sqrt{a_i}\rfloor$ for all $i\ge0$. Show that there exists a positive integer $n$ such that $a_n=b_n$. David Yang.
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ and $E$ be points on side $BC$ such that $BD=CE$ and $D$ lies between $B$ and $E$. Suppose there exists a point $P$ inside $ABC$ such that $PD\parallel AE$ and $\angle PAB=\angle EAC$. Prove that $\angle PBA=\angle PCA$. Calvin Deng.
A diabolical combination lock has $n$ dials (each with $c$ possible states), where $n,c>1$. The dials are initially set to states $d_1, d_2, \ldots, d_n$, where $0\le d_i\le c-1$ for each $1\le i\le n$. Unfortunately, the actual states of the dials (the $d_i$'s) are concealed, and the initial settings of the dials are also unknown. On a given turn, one may advance each dial by an integer amount $c_i$ ($0\le c_i\le c-1$), so that every dial is now in a state $d_i '\equiv d_i+c_i \pmod{c}$ with $0\le d_i ' \le c-1$. After each turn, the lock opens if and only if all of the dials are set to the zero state; otherwise, the lock selects a random integer $k$ and cyclically shifts the $d_i$'s by $k$ (so that for every $i$, $d_i$ is replaced by $d_{i-k}$, where indices are taken modulo $n$). Show that the lock can always be opened, regardless of the choices of the initial configuration and the choices of $k$ (which may vary from turn to turn), if and only if $n$ and $c$ are powers of the same prime. Bobby Shen.