2006 Switzerland Team Selection Test

Day 1

1

In the triangle $A,B,C$, let $D$ be the middle of $BC$ and $E$ the projection of $C$ on $AD$. Suppose $\angle ACE = \angle ABC$. Show that the triangle $ABC$ is isosceles or rectangle.

2

Let $n\ge5$ be an integer. Find the biggest integer $k$ such that there always exists a $n$-gon with exactly $k$ interior right angles. (Find $k$ in terms of $n$).

3

Let $n$ be natural number. Each of the numbers $\in\{1,2,\ldots ,n\}$ is coloured in black or white. When we choose a number, we flip it's colour and the colour of all the numbers which have at least one common divider with the chosen number. At the beginning all the numbers were coloured white. For which $n$ are all the numbers black after a finite number of changes?

Day 2

1

Let $n$ be natural number and $1=d_1<d_2<\ldots <d_k=n$ be the positive divisors of $n$. Find all $n$ such that $2n = d_5^2+ d_6^2 -1$.

2

Let $D$ be inside $\triangle ABC$ and $E$ on $AD$ different to $D$. Let $\omega_1$ and $\omega_2$ be the circumscribed circles of $\triangle BDE$ and $\triangle CDE$ respectively. $\omega_1$ and $\omega_2$ intersect $BC$ in the interior points $F$ and $G$ respectively. Let $X$ be the intersection between $DG$ and $AB$ and $Y$ the intersection between $DF$ and $AC$. Show that $XY$ is $\|$ to $BC$.

3

Find all the functions $f : \mathbb{R} \to \mathbb{R}$ satisfying for all $x,y \in \mathbb{R}$ $f(f(x)-y^2) = f(x)^2 - 2f(x)y^2 + f(f(y))$.

Day 3

1

The three roots of $P(x) = x^3 - 2x^2 - x + 1$ are $a>b>c \in \mathbb{R}$. Find the value of $a^2b+b^2c+c^2a$.

2

We place randomly the numbers $1,2, \dots ,2006$ around a circle. A move consists of changing two neighbouring numbers. After a limited numbers of moves all the numbers are diametrically opposite to their starting position. Show that we changed at least once two numbers which had the sum $2007$.

3

Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.

Day 4

1

Let $a,b,c \in \mathbb{R^+}$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Show $\sqrt{ab+c} + \sqrt{bc+a} + \sqrt{ca+b} \ge \sqrt{abc} + \sqrt{a} + \sqrt{b} + \sqrt{c}$.

2

Find all naturals $k$ such that $3^k+5^k$ is the power of a natural number with the exponent $\ge 2$.

3

An airport contains 25 terminals which are two on two connected by tunnels. There is exactly 50 main tunnels which can be traversed in the two directions, the others are with single direction. A group of four terminals is called good if of each terminal of the four we can arrive to the 3 others by using only the tunnels connecting them. Find the maximum number of good groups.