2003 Czech-Polish-Slovak Match

June 16th - Day 1

1

Given an integer $n \ge 2$, solve in real numbers the system of equations \begin{align*} \max\{1, x_1\} &= x_2 \\ \max\{2, x_2\} &= 2x_3 \\ &\cdots \\ \max\{n, x_n\} &= nx_1. \\ \end{align*}

2

In an acute-angled triangle $ABC$ the angle at $B$ is greater than $45^\circ$. Points $D,E, F$ are the feet of the altitudes from $A,B,C$ respectively, and $K$ is the point on segment $AF$ such that $\angle DKF = \angle KEF$. (a) Show that such a point $K$ always exists. (b) Prove that $KD^2 = FD^2 + AF \cdot BF$.

3

Numbers $p,q,r$ lies in the interval $(\frac{2}{5},\frac{5}{2})$ nad satisfy $pqr=1$. Prove that there exist two triangles of the same area, one with the sides $a,b,c$ and the other with the sides $pa,qb,rc$.

June 17th - Day 2

4

Point $P$ lies on the median from vertex $C$ of a triangle $ABC$. Line $AP$ meets $BC$ at $X$, and line $BP$ meets $AC$ at $Y$ . Prove that if quadrilateral $ABXY$ is cyclic, then triangle $ABC$ is isosceles.

5

Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}\ (k=1,2,\ldots n-1)$. Determine all positive integers $n$ for which $\binom{n}{1},\binom{n}{2},\ldots ,\binom{n}{n-1}$ are all even numbers.

6

Find all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy the condition \[f(f(x) + y) = 2x + f(f(y) - x)\quad \text{ for all } x, y \in\mathbb{R}.\]